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ABSTRACT

Human mobility prediction is vital for urban planning, transporta-
tion optimization, and personalized services. However, the inherent
randomness, non-uniform time intervals, and complex patterns of
human mobility, compounded by the heterogeneity introduced by
varying city structures, infrastructure, and population densities,
present significant challenges in modeling. Existing solutions often
require training separate models for each city due to distinct spatial
representations and geographic coverage. In this paper, we propose
UniMove, a unified model for multi-city human mobility prediction,
addressing two challenges: (1) constructing universal spatial repre-
sentations for effective token sharing across cities, and (2) modeling
heterogeneous mobility patterns from varying city characteristics.
We propose a trajectory-location dual-tower architecture, with a
location tower for universal spatial encoding and a trajectory tower
for sequential mobility modeling. We also design MoE Transformer
blocks to adaptively select experts to handle diverse movement
patterns. Extensive experiments across multiple datasets from di-
verse cities demonstrate that UniMove truly embodies the essence
of a unified model. By enabling joint training on multi-city data
with mutual data enhancement, it significantly improves mobil-
ity prediction accuracy by over 10.2%. UniMove represents a key
advancement toward realizing a true foundational model with a
unified architecture for human mobility. We release the implemen-
tation at https://github.com/tsinghua-fib-lab/UniMove/.
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(a) Single model for each city trajectory (b) Unified model for multi-city trajectory
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Figure 1: Comparison between existing solutions and our
approach.

1 INTRODUCTION

Human mobility [22], which record the movement patterns of in-
dividuals across time and space, have gained substantial impor-
tance in numerous fields, including urban planning [30, 31, 54, 55],
transportation management [41, 42, 53], mobile network optimiza-
tion [3, 27] and personalized services [18, 48, 52, 56]. Human mo-
bility presents unique challenges in modeling due to their inherent
randomness, non-uniform time intervals, and complex patterns [43].
Unlike vehicle trajectories [57], which typically follow more pre-
dictable and regular paths with time intervals on the order of sec-
onds, human mobility data is more irregular and context-dependent.

To effectively tackle such data and harness the wealth of mo-
bility information, researchers often treat a mobility trajectory
as a sequence of location tokens, with each city represented by
a set of unique tokens, similar to a vocabulary in language pro-
cessing. These tokens are typically discretized using grid-based
representations [21, 49], administrative divisions [43], or points
of interest (POIs) [8, 26], providing a structured approach to an-
alyzing movement patterns. Then, advanced AI models, such as
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RNNS [8, 46], transformers [21, 28], and other deep learning archi-
tectures [26, 44, 57], can be utilized to learn the underlying patterns
and dynamics of mobility trajectories. However, these tokens do not
overlap across cities due to the unique geographic coverage of each
urban area. As a result, practitioners often need to train separate
models for different geographic regions, which limits generalizabil-
ity and practical applicability. While some exceptions exist, such
as transfer learning approaches [12, 38, 39, 58], they either rely on
vehicle trajectories (where location representations, such as numer-
ical latitude and longitude, are transferable) [58] or just use more
tokens [12] or separate encoders [38] to address geographic differ-
ences. Some methods, such as ST-MoE-BERT [13], force the grid
cells of different cities into the same number of classes to process
mobility data from different cities with a shared encoder, which
severely erodes the distinct spatial identities of individual cities.

In this paper, we aim to propose a solution for training a unified
model with fully shared parameters across different cities, which
means that the model can accommodate the unique geographic
characteristics of each urban area, while simultaneously learning
shared mobility patterns that benefit from one another. We com-
pare our model with existing practices in Figure 1. However, this
is a non-trivial task, and it faces three main challenges: (1) Token
sharing across cities: since each city has its own unique geographic
coverage, designing a tokenizer and creating a universal spatial
representation that can be shared across different cities presents a
significant challenge. (2) Variations in city scale and structure: cities
differ greatly in terms of scale, population density, and infrastruc-
ture. Ensuring that the model can perform well across cities with
such diverse urban structures, from large metropolises to smaller
towns, is a difficult task. (3) Heterogeneity in mobility data: mobility
data varies widely between cities, which presents a challenge in
designing a model that can effectively learn from these diverse data
sources and enable meaningful knowledge transfer across cities.

To address the challenges above, we propose a unified mobil-
ity model UniMove. UniMove is a trajectory-location dual-tower
architecture. The Location Tower generates universal spatial repre-
sentations based on location characteristics, utilizing these features
to define locations and employing a Deep & Cross Net to enhance
their representation. The Trajectory Tower captures mobility pat-
terns from sequential trajectories. To handle diverse movement
patterns across cities, we design MoE Transformer blocks that
adaptively select expert networks based on data characteristics. Ex-
tensive experiments demonstrate that UniMove achieves superior
performance compared to baseline models. Moreover, the mutual
enhancement among data from multiple cities substantially boosts
the model’s performance, which suggests that UniMove effectively
captures shared mobility patterns across cities and leverages them
for mutual benefit.

In summary, our contribution can be summarized as follows:

o To our best knowledge, we are the first to explore the potential
for mutual enhancement among human mobility data across
different cities.

e We propose a unified human mobility prediction model Uni-
Move. We propose a trajectory-location dual-tower architecture.
The location tower generates universal spatial representations
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based on location characteristics while the trajectory tower ex-
tracts mobility patterns with MoE Transformers.

e Extensive experiments on multiple real-world datasets demon-
strate the superior performance of UniMove, which outperforms
state-of-the-art baselines by 8.9% in terms of accuracy. Mean-
while, the unified model facilitates data mutual enhancement
and exhibits faster convergence.

2 RELATED WORK
2.1 Human Mobility Prediction

Human mobility prediction has been extensively studied using
various modeling techniques, each aiming to capture the intricate
dynamics of human movement. Real-world applications of human
mobility prediction span a variety of domains, including smart
cities [36, 47], traffic management [41, 42], personalized recommen-
dations [18, 52, 56], and public health (e.g., predicting the spread
of diseases) [4, 11, 25]. Early methods relied heavily on probabilis-
tic models, such as the Markov model [6, 9] and EPR-based mod-
els [16, 29], where mobility patterns are derived from the transition
probabilities between discrete locations. These approaches, while ef-
fective in some contexts, often fail to capture the complex, dynamic
nature of human behavior [8, 43], especially when dealing with non-
uniform, irregular time intervals between events. Recently, deep
learning models have significantly advanced mobility prediction.
Models such as recurrent neural networks (RNNs) [5], attention
networks [8, 44], Transformers [7, 28], Graph Neural Networks
(GNN ) [32, 33], diffusion models [20, 21, 57] have been employed
to capture the temporal dependencies inherent in mobility data.
However, these models typically require training with large-scale
data. Since mobility patterns are highly localized and influenced
by unique geographic, cultural, and infrastructural factors, they
necessitate training separate models for each city’s data.

2.2 Location Encoding

Location encoding [24] plays a crucial role in human mobility pre-
diction by transforming spatial data into a form that can be pro-
cessed by deep neural networks. Location encoders can be divided
into two main categories: continuous location encoding and dis-
crete location encoding. For continuous encoding, locations are
treated as continuous values, often represented by continuous coor-
dinates (e.g., latitude, longitude) [45, 46, 51, 59]. These continuous
values can be directly embedded into the model through continu-
ous embeddings [2, 51, 59] or positional encodings [44, 46], which
are typically processed via neural networks to capture spatial re-
lationships in a continuous space. In discrete location encoding,
the continuous spatial domain is often divided into predefined lo-
cations, such as Points of Interest (POI) [8, 26], Areas of Interest
(AOQI) [50], administrative districtc [43], or grids [21, 43]. Each of
these locations is assigned a discrete identifier, and the locations
are then represented using techniques like one-hot encoding [1]. In
this way, each location is transformed into a unique token, much
like words in language models. Discrete encoding simplifies the
representation, making it more computationally efficient while still
allowing the model to process and distinguish between different
locations effectively.
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2.3 Cross-City Modeling of Human Mobility

Cross-city modeling of human mobility aims to leverage knowledge
and patterns learned from one city to improve mobility modeling
in another, addressing the challenges posed by data scarcity and
the unique characteristics of individual cities [10, 14, 15, 38, 39]. For
instance, He et al. [14] propose a top-down paradigm that utilizes
abundant annotated data to plan mobility for a new city. Addition-
ally, meta-learning frameworks [35] have been developed to enable
models to adapt quickly to new cities with limited data [10, 38].
However, existing approaches still face significant limitations. For
example, they often fail to address the challenge of using a single
shared model (with identical parameters) across different cities.
Current methods either rely on separate location embedding layers
for each city [38] or are restricted to handling vehicle trajectories
with numerical coordinate values [58, 59]. Unlike vehicle trajec-
tories, which primarily rely on numerical GPS coordinates (e.g.,
latitude and longitude), human mobility trajectories are inherently
richer in semantics, encompassing contextual information such as
Pols, activities, and urban infrastructure. This requires to address
the tokenization of locations across cities, ensuring that models can
effectively generalize and adapt to diverse urban environments.

3 PRELIMINARY
3.1 Human Mobility Data

Human mobility datasets are non-uniform trajectories with variable
lengths. The relevant definitions are provided as follows:
Definition of Location: A location is a grid area within a city,
uniquely identified by a specific location ID. The characteristics of
each location include its geographical coordinates, the distribution
of Points of Interest (POI), and popularity. The latitude and longi-
tude coordinates pinpoint the exact location of the area within the
city. The distribution of POIs reflects the functional nature of the
area. The popularity, measured by the number of visits during a
certain period, is a key indicator of its appeal and activity level.
Definition of Mobility Trajectory: The mobility trajectory of a

user, denoted as S, can be represented as {locy, t1;locy, t2; . . . ;1ocy, ),

where loc; represents the location ID where the user stays, and t;
represents the start time when the user first appears at location loc;.
Since precise time information at the millisecond level is redundant
and even noisy for our task, we divide a day into 48 time slots at
half-hour intervals and map t; to the nearest discrete time point.
As each user’s mobility pattern is different, although the trajectory
sequences are within the same time window T, the length n of
each sequence is not fixed, and the time interval between adjacent
locations t; and t;41 in each trajectory is also not fixed.

3.2 Mobility Prediction

In the context of mobility prediction, a typical scenario involves
leveraging a variable number of historical records to forecast the
subsequent future location. Specifically, given a sequence of histori-
cal mobility trajectories denoted as {S, t}ﬁ 1» Where H represents the
length of the historical time steps and is not fixed, the objective is to
predict the future location locgy.1, This task can be formally defined
as learning a mapping function # that transforms the historical
sequence into the future location, which can be mathematically

Table 1: Details of POI Categories

Auto Service

Auto Dealers

Auto Repair
Motocycle Service
Food & Beverages
Shopping

Daily Life Service
Sports & Recreation

Medical Service

Accommodation Service

Tourist Attraction

Commercial House
Governmental Organization
Science/Culture & Education Service

represented as:

locysr = F(S1h) (1)
where [ocs41 signifies the predicted location for the next stay point,
and S;.p denotes the historical records spanning the time period
from 1 to H. The primary goal is to accurately predict the next
future location based on the historical data provided.

The mobility prediction problem bears resemblance to the next
token prediction in the close task of natural language process-
ing(NLP). However, unlike NLP, where multiple datasets can utilize
the same vocabulary, each city’s mobility trajectory dataset varies
in the number and features of locations. When applied to multiple
datasets, existing methods require different encoders and predictors
for each city, and train the model from scratch on the new dataset.
It can be represented as:

locres = Fi(Sun) S € DD ={Dy, Dy,...} ()

where D is a collection of mobility trajectory datasets from multiple
cities. Our motivation is to develop a prediction model that can be
applied to datasets from multiple cities without any modification,
which can be mathematically represented as:

locirsr = F(Surr) S€D, D ={D, Dy, ...} 3)

4 METHODOLOGY

4.1 Overall Framework

We propose a unified mobility prediction framework UniMove,
which adopts a dual-tower structure, as shown in the Figure 2. The
Trajectory Tower predicts the intent embedding I € REXT*4 of the
next location based on the user’s historical trajectories. The Lo-
cation Tower generates candidate locations embedding L € RNV*4
based on the characteristics of locations within the city. the pre-
dicted location probability distribution M € RBXT*N is obtained by
element-wise multiplying L and I. The framework comprises three
main components:

e Location Encoder:The Location Encoder takes the regional
features of a location as input. Compared to existing methods
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Figure 2: The overall architecture of UniMove. (a)Trajectory Tower and Location Tower:Trajectory Tower predicts the latent
embedding of the next location based on historical trajectories, Location Tower generates the feature representations for all
candidate locations. (b)MoE(Mixture of Experts) Transformer Block. (c)Location Encoder. (d)Deep & Cross Net for further

capturing features from different locations.

Table 2: Details of Popularity Rank and Value

Popularity Rank | R value
<1% 0

1%-5%
5%-10%
10%-20%
20%-40%
40%-60%
60%-80%

>80%

N| NG| W DN =

that directly use location IDs as feature inputs, this approach can
be applied to extract features from locations in different cities
without altering any parameters

e Deep & Cross Net:We introduce DCN in the Location Tower
to model the features of locations within the city. This approach
not only enables automatic learning of complex interactions
between features but also further extracts unique characteristics
of different locations through feature crossing, thereby providing
more complex feature representations for subsequent prediction
tasks.

e MOoE Transformer Block: To address the heterogeneous distri-
bution of mobility data between different cities, UniMove utilize
MoE transformer, which assigns different data distributions to
specialized expert models. This reduces conflicts caused by data
heterogeneity and improves the model’s generalization capabil-

ity.

4.2 Location Encoder

Each location is defined as a grid area, and the location embedding
is obtained from three features: POI distribution P, geographical
coordinates G, and popularity rank R.

e POI distributionP € R*, where c represents the number of POI
categories. The details of POI categories are shown in Table 1. The
POI distribution is encoded into the form [ny, ny, . . ., ne, p1, pa, - - -
where n; denotes the number of POIs in the i-th category, and

n;
Pi =y %

e Geographical coordinatesG € R? refer to the latitude and longi-
tude of the location’s center point.

e R € R! is a discrete integer value.Based on the flow data of all
locations within the city, each location is ranked according to
its popularity.The R value is assigned based on the percentile
ranking: locations in the top 1% are assigned a value of 1, those
between 1% and 5% are assigned a value of 2, and so onThe
details of popularity rank and value are shown in Table 2.

,Pel,
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We then create three embedding layers to obtain the following
embeddings: POI embedding E,, € RBXTX% geographical embed-

ding E; € RP¥T*¢ | and flow rank embedding E, € REXTx The

RBxTxd

location embedding E; € is defined as the concatenation

of these three embeddings:
E; = concat(E,, E, E;) (4)

4.3 Deep & Cross Net

Location Tower introduces the Deep & Cross Net(DCN) to further
capture features from different locations. It consists of two main
parts: the Cross layer and the Deep layer. The design of the Cross
layer is inspired by [37], aiming to capture high-order feature inter-
actions through feature crossing. Suppose the input feature vector
is location embedding Ej, with a dimension of d. The Cross layer
calculates as follows:

d

Ecross = Z E; 0 W;E; + b; (5)

i=1
where O represents element-wise multiplication, and W; is the
learnable weight matrix. In this way, the Cross layer can effectively
capture the nonlinear relationships between features. The Deep
layer further processes features through a multi-layer perceptron
(MLP) structure. Its calculation method is as follows:

Edeep = (GELU(WIEI + bl))WZ +b, (6)

where W, and W, are learnable weight matrices, b; and b, are bias
terms, and GELU is an activation function that introduces nonlin-
earity. The candidate locations embedding L € RN*¢ is obtained
by concatenating the outputs of the Cross layer and the Deep layer.
The specific expression is as follows:

L= Concat(EcrOSSs Edeep) (7)

4.4 MoE Transformer Blocks

The Trajectory Tower is composed of MoE transformer blocks
that integrate multi-head masked attention and Mixture-of-Experts
(MoE) layers. It is designed to model mobility patterns and predict
the intent embedding I for the next location based on the user’s
historical trajectory. This process can be formulated as:

I = Transformer(E; + E;), 8)

where E; represents the embedding of the user’s historical trajec-
tory and E; € RFP*T*? denotes the embedding derived from the
timestamp information at each trajectory point.

4.4.1  Masked multi-head attention. The masked multi-head atten-

tion mechanism in our model incorporates two types of masks to

ensure proper information flow and handle variable-length trajec-
tories:

o Causal Mask: The causal mask ensures that the prediction at the
itn location is constrained to utilize information solely from the
first i—1 locations. Specifically, it enforces a unidirectional depen-
dency structure, where each location is influenced exclusively
by its preceding locations. This design is essential for modeling
sequential patterns in trajectories, as it effectively prevents the
leakage of future information and preserves the temporal order
inherent in the trajectory data.

e Padding Mask: Since the lengths of user trajectories vary, we
standardize the input length for the model by padding all tra-
jectories to a fixed length of T. To achieve this, we append a
special termination token (represented by 1) at the end of each
trajectory to signify its termination point. Subsequently, the re-
maining positions are filled with padding tokens (represented
by 0) to reach the desired length. This padding strategy ensures
that the model can process trajectories of different lengths while
maintaining the integrity of the original data structure.

4.4.2 Mixture of Experts (MoE). The MoE is composed of a gating
network and multiple expert networks, which serve as an alterna-
tive to the Feed-Forward Network (FFN) in the Transformer archi-
tecture. The gating network computes the activation probabilities
for each expert based on the input x, producing a probability distri-
bution vector G(x). The output of the gating network is calculated
as follows:

G(x) = Softmax(TopK(x - W)) 9)

where W is the weight matrix of the gating network, and TopK(-)
denotes the operation of selecting the top k largest values from the
input vector, with the remaining values set to —co to ensure that
only the top k experts are activated.

During the training of MoE model, it is common for the model to
favor a single expert, leading to load imbalance among the experts.
To address this issue, noise is added to the output of the gating
neural network. This helps to balance the load among different
experts by preventing the model from consistently routing inputs
to the same expert. Specifically, standard normal noise is added
to the logits produced by the gating network. This noise is scaled
by a factor derived from a separate linear layer, which allows for
adjustable noise levels, which can be expressed as follows:

noise = N'(0, 1) X Softplus(x - W) (10)

where N (0, 1) represents the standard normal noise, and W, is the
weight matrix of the additional noise linear layer. The noisy logits
are then used to select the top-k experts, ensuring that the selection
process is more randomized and less biased towards any particular
expert. So the final logits of the gating network can be expressed as

G(x) = Softmax(TopK(x - W + noise)) (11)

This method not only promotes load balancing but also enhances
the model’s robustness and generalization ability. Each expert net-
work produces an output E;(x), where i indicates the i-th expert.
For each input x, only the k selected experts by the gating network
will compute their outputs.

Ultimately, the output of the MoE layer Hp. is the weighted
sum of the outputs from the selected k experts, with the weights
determined by the gating network’s output:

k
Hioe = ) Gi(x) - Ei(x) (12)
i=1

This sparse activation mechanism ensures that only a subset of
experts participate in the computation, the dynamic selection by
the gating network allows the model to choose the most suitable
experts based on the characteristics of the input, enhancing the
model’s adaptability and generalization capability.



Algorithm 1 Training

Require: Trajectory Dataset D = {D1, D, .
diction model F, and loss function L.

Ensure: Learnable parameters 6 for the model F

1: for epoch € {1,2,..., Njzer} do

2 Randomly sample a mini-batch x from D,,.
Trajectory data x; = (P;, G, R, t;).
location data [ = (PN, GN,RN),
Ep,Eg, Er, Ey < emb(P;), emb(G;), emb(R;), emb(%;)
I = Transformer(concat(E,, Eg, E,) + E;)
My, My, My — emb(PN), emb(GN), emb(RN)
L = DCN(concat(M,, My, M;))
logits=TO® L
10: Compute the Cross Entropy loss £ « L(logits, x)
1 Update the model’s parameters 6 « update(L;0)
12: end for

.., Dm}, Mobility pre-

4.5 Training

As summarized in the algorithm 1, during the training process, a
batch of trajectory data is extracted from the dataset of a random
city. The user’s historical trajectory data is fed into the Transformer-
based Trajectory Tower to derive the intent embeddingl € RE*T*¢for
the next location prediction. Concurrently, the features of all loca-
tions within the city are input into the Location Tower to generate
the location embedding L € RVN*?. The final logits € REXT*N s
computed through element-wise multiplication of L and I, with the
logits calculation being as follows:

d
logitsy ;= > Insi - Lng (13)

i=1
and the loss is expressed as:

Loss = Cross-Entropy Loss(logits, x) (14)

RBXT

where x € is the trajectory location id.

5 PERFORMANCE EVALUATIONS
5.1 Experimental Settings

5.1.1 Datasets. We conduct extensive experiments on three real-
world mobility datasets: Shanghai, Nanchang, and Lhasa. Detailed
information on the data sets is summarized in Table 3. For pre-
processing the trajectory data in these datasets, we applied a sliding
window of three days to each user’s trajectory and filtered out
trajectories with fewer than five trajectory points. In the location
pre-processing phase, we map GPS points to predefined grid area
IDs with a granularity of 500 m X 500 m and record features such
as the POI distribution within each grid area. For every location,
POI data is sourced from Gaode Map and consists of 14 major
categories. The longitude and latitude of all locations in the same
city are normalized to have a mean of 0 and a standard deviation of 1.
We discretize the popularity rank based on quantiles. For temporal
pre-processing, we organized the time data into fixed half-hourly
intervals. Finally, we divided the data into training, validation, and
testing sets based on different users, with a ratio of 6 : 2 : 2.

Han et al.

Table 3: Basic statistics of mobility data.

City Duration Location Trajectory
Shanghai 14 days 5451 483200
Nanchang 7 days 2055 26400

Lhasa 28 days 166 48160

5.1.2  Metrics. Evaluation metric Acc@K is utilized to measure the
proportion of samples that are correctly predicted within the top K
highest-probability locations by the model. The formula for Acc@k
can be expressed as follows:

N
Acc@k = D1 € (G S SGRD) (19

where I(-) is the indicator function (1 if the condition is true, 0
otherwise), N is the total number of samples, y; is the true label for
the i-th sample, f(x;)1, ..., f(xi); are the top k predictions made
by the model for the sample x;.

5.1.3 Baselines. To evaluate the performance of our method, we
compared it with state-of-the-art models.The details are as follows:

e Linear:Linear model employs the linear regression to predict
the probability distribution of the next location.

e Markov [9]:The Markov model serves as a statistical framework
designed to depict how states evolve over time. It predicts future
locations by computing the probabilities of transitions.

e LSTM [17]:LSTM networks excel at processing sequential data
and are adept at capturing long-term dependencies, making them
naturally suitable for location prediction tasks.

e Transformer [34]:Transformer is a deep learning architecture
based on the self-attention mechanism, capable of efficiently pro-
cessing sequential data and capturing long-range dependencies.

e DeepMove [8]:This approach is particularly effective in ad-
dressing the challenges of predicting human movement patterns,
which are influenced by various factors such as time, location,
and personal preferences

o TrajBert [28]:TrajBERT is a trajectory recovery method based
on BERT, which recovers implicit sparse trajectories through
spatial-temporal refinement.

e STAN [23]: STAN employs a spatio-temporal bi-attention archi-
tecture to capture non-adjacent location correlations and non-
consecutive visit dependencies.

o GETNext [40]: GETNext integrates Graph Convolutional Net-
works (GCN) and Transformer to model global POI transition
patterns via a trajectory flow map. It fuses spatio-temporal con-
texts with time-aware category embeddings for next POI recom-
mendation.

e CTLE [19]: The Context and Time aware Location Embedding
(CTLE) model dynamically generates context-specific location
embeddings using bidirectional Transformers and temporal en-
coding to capture multi-functional properties of locations under
varying contexts and temporal dynamics.

5.1.4 Implementation Details. The transformer blocks utilized in
this study comprises 8 layers, with an embedding dimension of 512.
The MoE layer within the model consists of 4 experts and employs
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Table 4: Performance comparison of different prediction models in terms of Acc@k, where bold denotes best results.

Nanchang Lhasa Shanghai
Model Acc@1 Acc@3 Acc@5 Acc@1l Acc@3 Acc@5 Acc@1 Acc@3 Acc@5
Linear 0.125 0.300 0.398 0.253 0.500 0.622 0.105 0.239 0.326
Markov 0.166 0.353 0.402 0.288 0.557 0.688 0.154 0.303 0.406
LSTM 0.224 0.416 0.541 0.366 0.601 0.702 0.206 0.353 0.459
Transformer 0.225 0.448 0.543 0.380 0.614 0.715 0.232 0.404 0.454
DeepMove 0.243 0.420 0.503 0.401 0.610 0.690 0.214 0.365 0.445
TrajBert 0.249 0.423 0.505 0.353 0.571 0.672 0.246 0.411 0.489
CTLE 0.252 0.435 0.508 0.413 0.588 0.682 0.260 0.405 0.445
STAN 0.244 0.422 0.507 0.384 0.600 0.685 0.247 0.409 0.469
GETNext 0.258 0.438 0.522 0.408 0.619 0.713 0.262 0.400 0.477
UniMove(separate) 0.261 0.455 0.506 0.421 0.557 0.679 0.244 0.405 0.462
UniMove 0.338 0.509 0.573 0.425 0.646 0.722 0.263 0.412 0.476
Table 5: Results of the ablation study.
Nanchang Lhasa Shanghai
Model Acc@1 Acc@3 Acc@5 Acc@1 Acc@3 Acc@5 Acc@l Acc@3 Acc@5
w/o den 0.316 0.492 0.560 0.414 0.632 0.720 0.243 0.379 0.421
w/0 moe 0.321 0.497 0.562 0.405 0.617 0.705 0.261 0.403 0.461
UniMove 0.338 0.509 0.573 0.425 0.646 0.722 0.263 0.412 0.476

a top-k gating mechanism, where k = 2. Training was conducted
using the AdamW optimizer, with a learning rate set to 3 x 10~*, for
a total of 50 epochs. Early stopping was implemented to terminate
training if the validation loss did not improve for 3 consecutive
epochs. The batch size was fixed at 16.

5.2 Overall Performance

The overall performance of UniMove is compared with that of the
baselines, and the results are presented in Table 4. Based on the
experimental findings, we have reached the following conclusions:

e UniMove outperforms the state-of-the-art baselines in the
mobility prediction task. By integrating the trajectory data of
multiple cities for joint training, UniMove can more accurately
capture the complex patterns of human mobility, thereby effec-
tively improving the model’s prediction performance. Compared
with the SOTA baselines, the accuracy of UniMove has been
significantly improved, with the highest increase reaching 35.7%
in terms of Acc@1 for Nanchang dataset.

e Data from different cities can complement each other,
thereby enhancing the performance of UniMove. Compared
with training UniMove solely on a single dataset, incorporating
mobility trajectory data from other cities can significantly en-
hance the model’s prediction accuracy for target city trajectories.
Specifically, across multi-city datasets, the performance metrics
ACC@1, ACC@3, and ACC@5 have improved by 12.7%, 9.8%,
and 7.5%, respectively.

e The performance improvement of UniMove is more pro-
nounced in the city with sparse mobility data. For Nanchang
city with limited data and incomplete mobility patterns, UniMove
can effectively leverage the data resources from data-rich cities
with complete mobility patterns, such as Shanghai.UniMove
achieves better performance improvements on the sparse Nan-
chang dataset than on the Shanghai dataset. Specifically, on the
Shanghai dataset, UniMove achieves an average improvement of
18.1%, while on the Nanchang dataset, the metrics improved by
an average of 4.1%.

5.3 Ablation Study

To investigate the critical roles of different design modules in Mob-
Former, we conducted ablation studies on three datasets. Specif-
ically, we removed the feature-crossing DCN and the MoE layer
from the model architecture. Since completely removing the DCN
would lead to the model’s inability to capture higher-order location
features, we only removed the cross-layer of the DCN and replaced
it with an MLP. For the MoE layer, we replaced it with an FFN
(Feed-Forward Network) layer.

As shown in Table 5, the experimental results indicate that when
replacing the DCN with an MLP, the model performance deteri-
orated on datasets with a larger number of locations. This phe-
nomenon demonstrates that the DCN has a unique advantage in
capturing the differences between locations, allowing it to more
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Figure 3: Locations embedding of three cities based on t-SNE visualization. (a)-(c) are original embeddings, and (d)-(f) are final

embeddings learned by DCN.

accurately characterize the complex relationships between different
locations, which is crucial for model performance.

Moreover, after removing the MoE layer, the performance degra-
dation is more significant on the Nanchang dataset with a smaller
data volume. This clearly indicates that the MoE layer plays a key
role in handling the heterogeneity of data from different cities. It
can effectively integrate data with similar mobility pattern trajecto-
ries, thereby enhancing the model’s adaptability and generalization
ability for cross-city data.

5.4 Visualization of Location Embeddings

The location tower extracts the representations of all locations
within a city. Given that the distribution of location features varies
significantly across different cities, to analyze how the location
tower handles this heterogeneity, we select the original embeddings
of each city after passing through the Location Encoder and the final
location embeddings learned by DCN and use t-SNE dimensionality
reduction for visualization.

Figure 3 shows t-SNE visualization analysis of location embed-
dings for cities, it was observed that after learned by Deep & Cross
Network (DCN), the distribution of locations across different cities
exhibited higher similarity. This indicates that DCN is capable of
effectively extracting similar location feature patterns across differ-
ent cities, thereby providing strong support for cross-city location
analysis and modeling. Meanwhile, within the same city, the distri-
bution of locations is no longer as concentrated as in the original
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Figure 4: Expert selection distribution in MOE Layers across
three city datasets.

embeddings, and the differences between various locations become
more pronounced.

5.5 In-depth Analysis of MoE

To thoroughly investigate whether MoE can capture the common
mobility patterns across different cities and to understand its mecha-
nism for handling data heterogeneity, we have conducted a detailed
statistical analysis of the expert selection probabilities of different
MOoE layers across various mobility data.

Figure 4 illustrate the average probabilities of the gating net-
work outputs in the first and last layer for three datasets. It can be
observed that there are significant differences in expert selection



UniMove: A Unified Model for Multi-city Human
Mobility Prediction

0.40 04T
0.38
0.36 ' 0.40
m L
©0.34
o032t 0:39
0.30 0.38
0.281
0.26 0.37
0.10.20.30.40.50.60.70.80.91.0 1M 10M 30M 80M

Data percent Model Param

Figure 5: Data scalability(left) and model scalability(right).

Table 6: Acc@1 results of the hyperparameter study.

Expert/Topk Nanchang Lhasa Shanghai

4/2 0.338 0.425 0.263
4/1 0.293 0.403 0.255
4/3 0.334 0.426 0.263
3/2 0.311 0.412 0.260
6/2 0.332 0.426 0.273

among various cities for the first layer, suggesting that the MOE dy-
namically selects the expert networks to be activated based on the
different characteristics across cities. Meanwhile, the last layer ex-
hibit more similar probability distributions, indicating that despite
significant heterogeneity among different cities, similar patterns
exist at higher-order dimensions.

5.6 Scalability

The high performance of UniMove is attributed to the joint training
on multiple city datasets, which provides a richer information base.
To verify the performance bottlenecks of the model under different
parameter sizes and data volumes, we conducted experiments by
testing the model’s performance with varying parameter sizes and
training data volumes.

Figure 5 shows the impact of varying model parameter scales and
dataset sizes on prediction performance. We have identified two
characteristics: (i) As the training data volume increases progres-
sively, the model’s prediction performance exhibits a continuous
upward trend. However, once the data volume reaches a certain
threshold, the performance improvement gradually slows down
and stabilizes. (ii) When the model’s parameter scale is increased,
the performance improves incrementally. However, for the dataset
used in this study, overly complex model structures lead to faster
convergence, which in turn prevents the model from achieving
optimal performance.

5.7 Hyperparameter of MoE Analysis

In our exploration of how different hyperparameters within the
Mixture of Experts (MoE) framework impact model performance,
we conducted experiments by varying the number of experts as
well as the top-k values. The experimental outcomes are displayed
in Table 6.

Changing the number of experts alters the model’s parameter.
From the table, a reduction in the number of experts tends to have

—e— train on single city
5.5 - - train on multi-city
5.2
7
o049
2
g46
4.3
4.0
2 4 6 8 10
epoch

Figure 6: Comparison of training efficiency between single
city and multi-city in terms of validation loss.

a detrimental effect on the model’s performance. When the number
of experts is decreased, the model’s capacity to capture complex
patterns and diverse features in the data is diminished, thereby
leading to suboptimal results. Conversely, increasing the number
of experts does not necessarily lead to further improvements in
performance. This result is consistent with the analysis in Section
5.6. Due to the limited diversity and quantity of the current training
data, adding more experts or model parameters does not enhance
the model’s performance. Furthermore, the influence of top k and
the number of experts on model performance resembles each other.
Under the current training data, reducing the top k value leads to a
performance drop, while increasing it doesn’t significantly boost
model performance.

5.8 Training Efficiency

To deeply explore if the multi-city joint training method can boost
model performance and training efficiency, and whether it can help
the model quickly grasp universal patterns while significantly im-
proving prediction accuracy, we compared the validation loss of the
UniMove trained on single city and multi-city datasets. Comparing
the validation loss of the UniMove model trained on single-city
and multi-city datasets showed in Figure 6 , it demonstrates that
joint training across multiple cities significantly enhances the train-
ing efficiency of the model. Specifically, within the same epoch,
the reduction in loss value is much greater for multi-city training.
The complementarity and similarity of data from different cities
(such as variations in traffic patterns and user behaviors) provide a
richer set of training information. This enables the model to rapidly
capture universal patterns and achieve the optimal performance at-
tainable by single-dataset training within fewer epochs. Moreover,
it effectively improves the performance of prediction accuracy.

6 CONCLUSION

In this work, we propose UniMove, a transformative approach to
human mobility prediction that unlocks the potential for more
robust and scalable modeling paradigms. By enabling joint training
across multi-city data and promoting mutual enhancement across
diverse urban environments, UniMove not only improves prediction



accuracy but also advances the concept of a unified foundational
model. Furthermore, the ability to leverage shared mobility insights
across cities with varying structures and characteristics paves the
way for more generalized and adaptable models that can be applied
on a global scale.

While UniMove currently focuses on mobility prediction, its
next-token prediction training framework lays a promising foun-
dation for future expansion into other tasks. We plan to extend
the model’s capabilities to include mobility generation, trajectory
recovery, and anomaly detection. Additionally, this architecture
holds the potential for integration with large language models,
enabling a more seamless understanding of mobility data in natu-
ral language contexts. This synergy could facilitate more intuitive
human-computer interactions and open new possibilities for urban
decision-making.
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