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Abstract
City-scale individual movements, population flows, and urban morphology are intricately intertwined, collectively contributing to the 
complexity of urban mobility and impacting critical aspects of a city, from socioeconomic exchanges to epidemic transmission. Existing 
models, derived from fundamental laws of human mobility, often capture only partial facets of this complexity. This article introduces 
DeepMobility, a powerful deep generative collaboration network designed to encapsulate the multifaceted nature of complex urban 
mobility within one unified model, bridging the gap between the heterogeneous behaviors of individuals and the collective behaviors 
emerging from the entire population. As the first generative deep learning model to integrate micro- and macrolevel dynamics through 
bidirectional collaboration, DeepMobility generates high-fidelity synthetic mobility data, overcoming key limitations of prior approaches. 
Our experiments, conducted on mobility trajectories and flows in cities of China and Senegal, reveal that unlike state-of-the-art deep 
learning models that tend to “memorize” observed data, DeepMobility excels in learning the intricate data distribution and successfully 
reproduces the existing universal scaling laws that characterize human mobility behaviors at both individual and population levels. 
DeepMobility also exhibits robust generalization capabilities, enabling it to generate realistic trajectories and flows for cities lacking 
corresponding training data. Our approach underscores the feasibility of employing generative deep learning to model the underlying 
mechanism of human mobility and establishes a versatile framework for mobility data generation that supports sustainable and livable cities.

Keywords: human mobility, generative deep learning, urban planning, complex network

Significance Statement

Urban mobility, a critical factor in shaping sustainable and livable cities, encompasses complex interactions between individual 
movements and population flows. Traditional models often fall short in capturing the full spectrum of these dynamics. Our study 
introduces DeepMobility, a novel deep generative collaboration network designed to encapsulate the multifaceted nature of urban 
mobility within a unified framework. Unlike existing deep learning models, DeepMobility effectively learns and reproduces universal 
scaling laws of human mobility at both individual and population levels, demonstrating robust generalization capabilities across di
verse urban contexts. This advancement not only enhances our understanding of urban dynamics but also provides a powerful tool 
for urban planning and management, contributing to the development of resilient and efficient cities.
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Introduction
Human mobility, an indispensable component of urban function
ality, serves as a linchpin in establishing essential connections 
across diverse city regions, thus facilitating residents’ access to 
and utilization of urban services (1, 2). Beyond fostering commer
cial interactions and innovation diffusion (3, 4), it concurrently 
engenders multifaceted challenges including traffic congestion 
(5) and epidemic transmission (6, 7). Consequently, human mobil
ity plays a pivotal role in shaping urban dynamics across cultural, 
economic, and environmental dimensions (8–12). The intricate 
interplay of city-scale individual movements, resulting popula
tion flows, and urban morphology collectively contributing to 

the complexity of urban mobility (13). Correctly modeling these 
complex human activities within cities is essential for managing 
energy consumption (14), planning infrastructure (15, 16), and 
monitoring urban growth (17, 18), all of which are crucial for cre
ating sustainable and livable urban environments (19).

In the pursuit of understanding the intricate dynamics of urban 
mobility, statistical physicists have increasingly focused on the 

analysis of empirical mobility data to uncover universal patterns 

in human mobility since the turn of this century (20–22). This 

leads to the discovery of scaling laws governing both individual 

movements (20, 21, 23–27) and population flows (22, 28–32). 

Individual human movements, unlike physical particles, can be 
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approximated by a scale-free Lévy flight, with truncated power 
law distributed spatial distance (20, 21), up to a distance charac
terized by the individual’s radius of gyration, which also follows 
truncated power law distribution (21). Conversely, temporal 
memory effects, representing the tendency to revisit particular lo
cations, are characterized by the scaling laws including Zipf’s law 
of visitation frequency (21), sublinear growth in the number of 
unique locations visited (24), and an ultraslow diffusion process 
(24). In terms of collective behaviors, the flow of population mobil
ity can be broadly characterized by the gravity law (28), which pos
its that the probability of movement between regions is 
proportionate to their respective populations. Furthermore, this 
flow can be more precisely predicted by the radiation model 
(22). Temporal regularities emerge as well, notably the distance- 
frequency scaling law (32), revealing an inverse square relation
ship between the number of visitors to a location and their visit 
frequency. Additionally, power law distributions govern the num
ber of trips between regions and trips originating or ending in spe
cific regions (30, 31). Despite the success in identifying these 
fundamental laws, it is essential to note that the existing models, 
often developed through theoretical derivations, are limited in 
their capacity to fully encompass all facets of these laws. The sig
nificant disparities among various mobility laws, particularly 
those stemming from distinct levels of analysis of individual 
movements vs. population flow, present a significant challenge 
in the pursuit of a unified theoretical model. Alessandretti et al. 
(27) and Yan et al. (30) have made progress in bridging this gap 
by exploring human mobility across different geographical scales. 
These works offer insights into individual and population mobility 
interplay but rely on simplified physical models, limiting their 
adaptability to complex real-world scenarios.

Recent advancements in AI, particularly in the domain of deep 
generative AI models, offer a promising alternative to mechanistic 
approaches in constructing high-capacity models capable of cap
turing various mobility laws. Deep learning models like generative 
adversarial networks (GANs) (33) or variational autoencoders 
(VAEs) (34) have demonstrated remarkable versatility in learning 
the distribution of real-world mobility data, and generating syn
thetic data with comparable statistical properties (35). Previous 
research has successfully applied these models to specific model
ing tasks, including the generation of human trajectories that 
mimic individual movements (36–41) and the prediction of popu
lation flows between pairs of regions (42–44). Notably, these deep 
learning (DL) based models have shown higher accuracy com
pared to traditional theoretical models (22, 28). However, despite 
the considerable realism achieved by these DL-based models in 
specific-level descriptions of urban mobility, they predominantly 
focus on either individual trajectories or aggregated flows, but 
cannot consider both simultaneously. The collective mobility pat
terns emerge from the bottom-up aggregation of individual move
ments, which in turn impose constraints that influence individual 
behaviors. This bidirectional influence between individual and 
population levels contributes to the complexity of urban mobility. 
Yet, effectively characterizing this intricate interplay in deep gen
erative models remains an unresolved challenge.

In response to this challenge, we introduce DeepMobility, a pio
neering generative deep learning model designed to capture the 
multifaceted nature of complex urban mobility. Unlike traditional 
approaches that rely on predefined rules, DeepMobility learns dir
ectly from data, enabling a more flexible and nuanced representa
tion of the interplay between individual preferences and 
population-level trends. DeepMobility conceptualizes human 
movement as a sequential decision-making process and employs 

a GAN-based framework to train a deep generative collaboration 
network for simulating human mobility behaviors. This neural net
work comprises three components: a generator for producing indi
vidual trajectories and aggregated population flows, a 
discriminator for assessing the quality of these trajectories and 
flows against real data, and a critic for providing guidance from 
the discriminator so as to improve the generator. To characterize 
the dynamic interplay between individual behaviors and broader 
population trends, DeepMobility incorporates two innovative col
laborative learning mechanisms: bottom-up interaction modeling 
and top-down feedback refinement. The bottom-up approach, im
plemented in the generator, effectively integrates social interac
tions into individual movement patterns. Concurrently, the 
top-down approach, functioning in the critic, allows for precise ad
justments to individual behaviors based on aggregated population- 
level flow patterns. In this way, it successfully bridges the heteroge
neous behaviors of individuals and collective behaviors emerging 
from the entire population to capture the multifaceted nature of 
complex urban mobility. Compared with prior works (27, 30), our 
approach introduces a deep learning-based framework that expli
citly models the bidirectional interactions between individual pref
erences and population dynamics through collaborative learning. 
While these earlier studies focus primarily on understanding cross- 
scale human mobility using simplified physical models, their reli
ance on predefined assumptions and rules limits their ability to 
generate realistic, high-fidelity synthetic mobility data. In contrast, 
our objective is to accurately reproduce complex urban mobility 
patterns, enabling practical applications in areas such as traffic en
gineering, urban planning, and epidemic containment.

Utilizing data from three Chinese metropolises (Beijing, 
Shanghai, Shenzhen) and Senegal, we trained DeepMobility mod
els to generate human mobility trajectories and resulting flows 
across urban regions at high spatiotemporal resolutions. 
Notably, the model is trained exclusively on location data, with 
no additional city-specific information incorporated as input dur
ing training. Remarkably, our results show significant improve
ments over previous models. DeepMobility demonstrates 
advantages in five key statistical properties of trajectories and 
achieves substantial enhancements in flow generation: up to 
120% in Beijing, 112% in Shanghai, 136% in Shenzhen, and 81% 
in Senegal. Importantly, the realism of the generated data is vali
dated through a detailed comparison with real-world trajectories 
at both the individual and population levels. Furthermore, 
privacy-preserving evaluations confirm that DeepMobility does 
not simply “memorize” the training data but instead learns under
lying mechanisms, ensuring high utility while maintaining indi
vidual privacy. A practical yet challenging application of 
DeepMobility is generating realistic mobility data with high utility 
for target cities lacking mobility data. We showcase that the geo
graphically transferred DeepMobility performs on par with its 
counterpart trained specifically for the target city, suggesting ro
bust generation capabilities across varying urban contexts of 
demographics and geography. Further investigation into the origin 
of this exceptional performance reveals that DeepMobility is cap
able of simultaneously reproducing existing mobility laws previ
ously discovered by physicists, despite being purely data-driven 
and free of predefined mechanisms. Notably, the parameters of 
these mobility laws, such as those governing jump length (Δr) 
and radius of gyration (rg), vary across different datasets, reflecting 
the unique mobility characteristics of individuals in each urban 
context. This variation highlights the model’s ability to adapt to di
verse mobility patterns and ensures that the generated data au
thentically mirrors the distinct individual and regional dynamics 
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of each dataset. The emergence of this capability to reproduce 
complex patterns indicates that DeepMobility goes beyond mere 
data memorization, capturing the underlying mechanisms of ur
ban mobility in a way other deep learning models have not.

Results
DeepMobility framework
To fully model the complex urban mobility with both the individual 
movement laws and the emerging collective flow patterns, we pro
pose a deep generative collaboration network for generating the 
multiscale realistic human trajectories and the resulting mobility 
flows in a city (Fig. 1) . We aim to learn a mobility model that simu
lates an individual’s mobility decision-making process based on ob
served data. Specifically, given an individual’s travel history x<t at 
time t, it estimates the probability of visiting location lt, i.e. 
π(lt|x<t), and generates a spatiotemporal trajectory by sequentially 
sampling lt ∼ π( · |x<t) to obtain a sequence of individual move
ments. Then, for the entire urban population, their movements 
are learned by following a joint policy, i.e. Π(lt|x<t), and aggregate 
into region-wide flows that reflect daily rhythms of urban activities. 
To capture human mobility patterns at both individual and popula
tion levels, we formulate the learning process of DeepMobility as the 
following multiobjective optimization problem with respect to π:

min
π

Ldist Pdata(lt|x<t), π(lt|x<t)
( 􏼁

, Lerror F
t,data, F(Π(lt|x<t))

􏼐 􏼑􏼐 􏼑
. (1) 

The first objective aims to minimize the distance between the stat
istical distribution of generated movements, i.e. π(lt|x<t), and that of 
observed data, i.e. Pdata(lt|x<t), in terms of spatiotemporal regularity. 

The second objective aims to minimize the reconstruction error of 

generated flows, i.e. F(Π(lt|x<t)), that are aggregated from popula
tion’s movements. The complexity of this problem mainly lies in 
the bidirectional influence across individual and population levels 
of human mobility. First, the bottom-up aggregation of mobility 

flows, indicated by Π(lt|x<t), essentially incorporates the influence 

of social interactions from the population, which means Π(lt|x<t) ≠ 
􏽑N

n=1 π(ln,t|xn,<t) and prohibits the traditional independent modeling. 
Second, the individual mobility model π is simultaneously con
strained by population-level mobility information, requiring a top- 
down learning process.

The modeling framework of DeepMobility is presented in Fig. 2. 
It consists of three components, i.e. a generator, a discriminator, 
and a critic. The generator aims to generate individual trajectories 
with the resulting flows that are indistinguishable from empirical 
data by the discriminator. Figure 2a illustrates the generation pro
cess at the generator, with a GRU-based state encoder that trans
forms location visit history into a fixed-length hidden vector and a 
hierarchical decoder that simulates the mobility decision process 
to first decide the next visit region and then choose a specific loca
tion in this region. To achieve collaborative learning from individ
ual mobility to collective mobility and model the multiscale 
patterns and complexity, we design a bottom-up social inter
action modeling mechanism at the trajectory decoder. 
Specifically, we use two modules to generate the next visit region 
based on individual preference and social interaction, respective
ly, and the final decision is made between these two according to a 
learnable probability score that measures an individual’s uncer
tainty about following his/her preference. The preference-based 

Fig. 1. Illustration of complex urban mobility from both the individual and population perspectives. The bottom layer represents individual movement 
trajectories between urban locations, and the top layer denotes population flows between urban regions, where more (fewer) arrow lines indicate larger 
(smaller) flows. Among trajectories, several samples belonging to each flow are highlighted with the same color. Regions are shown as geographical 
polygons.
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module uses an multilayer perceptron (MLP) (45) that takes state 
embedding as input and outputs a vector indicating the visitation 
probability of each region, while the interaction-based module 
also adopts an MLP-based structure (42) that takes regional attrib
utes as input and predicts the visitation probability in terms of 
population movements. Figure 2c illustrates the multilevel struc
ture of the discriminator that evaluates the realism of generated 
trajectories and the aggregated flows. The individual-level dis
criminator also uses a gated recurrent unit (GRU)-based module 
(46) as it needs to process a trajectory sequence and output the 
score indicating whether it is similar to actual data, while the 
population-level discriminator directly computes the relative er
ror between the generated flow value and the ground truth. 
These feedbacks are sent back to improve the generator through 
another critic network using a well-established proximal policy 
optimization algorithm (PPO) (47), as illustrated in Fig. 2d–f. To 
achieve collaborative learning from collective to individual mobil
ity data, we design a top-down feedback refinement mechanism 
at the critic. Specifically, the critic adopts a multilevel structure 
to approximate value functions for the generator output. 
Besides the individual-level critic, another population-level critic 
leverages a value decomposition technique (48) that transforms 
the overall assessment of population movements into individual- 
level feedback, which directly refines mobility behavior in a top- 
down manner (Materials and methods and Section S1).

DeepMobility generates human mobility 
trajectories and the resulting flows at the urban 
scale
To assess the capability of the proposed DeepMobility modeling 
framework, we perform an experiment that utilizes it to generate 

synthetic data and evaluate whether they represent intricate mo
bility patterns at both individual and population levels. 
(Experiment details are provided in Section S2.) First, for individ
ual mobility patterns, we verify if the generated trajectories are 
statistically similar to the real data by quantify the distribution 
differences using the Jensen–Shannon divergence (JSD) and the 
Kolmogorov–Smirnov (KS) test (38, 49), which are bound by 
[0, 1], with 0 indicating a perfect match between two distributions. 
In particular, we focus on the following five fundamental metrics 
(1, 35, 50): jump length Δr (distance of each travel), weekly trip dis
tance rw, radius of gyration rg, waiting time Δt (time spent at the 
same location), and daily visited locations Sd of an individual. 
These metrics comprehensively cover empirically observed mo
bility patterns including spatial and temporal regularity (Δr, Δt) 
(21), population heterogeneity (rg) (21) and ultraslow growth of 
travel distance and visited location number (rw, Sd) (24). Then, 
for population mobility patterns, we use the CPC (32, 42) and the 
mean absolute error (MAE) (35, 51) to calculate the distance be
tween the real and the generated flows. The mobility flows are cal
culated as how many people move from one region to another 
within a period, and CPC is bounded by [0, 1] with 1 indicating 
the two are identical and 0 suggesting no overlap. For perform
ance comparison, we choose the four most widely used mechan
istic approaches and deep-learning approaches, including the 
CTRW model (21), the EPR model (24), the TimeGeo model (49), 
and the GAN model (38, 52).

To verify the modeling capability of DeepMobility at the indi
vidual mobility level, in Fig. 3a–d, we calculate the JS divergence 
of five metrics (Δr, rw, rg, Δt, and Sd) for generated trajectories of 
each model, finding that our model generates individual trajector
ies with the highest statistical similarity. (See complete numerical 
results in Table S3.) Further results of the KS test (Table S4) also 

a

b e

f

c

d

Fig. 2. Overview of the proposed deep generative collaboration network DeepMobility. It consists of three components to learn the complexity of urban 
mobility. The first component is a mobility generator, as shown in the left panel. This generator is implemented using a GRU-based state encoder and a 
trajectory decoder that produces the next visited location by employing a bottom-up social interaction modeling technique. Then a multilevel 
discriminator evaluates the utility of the generated movements from both individual and population perspectives. This feedback is used to train a 
multilevel critic (detailed in the right panel) that decomposes the overall guidance from population-level mobility and directly guides the optimization of 
the generator at the individual level (Top-down feedback refinement).
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verify such generation realism with 15 (out of 20) KS statistics of 
distributions no larger than 0.2. Unlike mechanistic models, 
DeepMobility leverages the power of deep learning to learn indi
vidual features from the mobility data. Thus, it can capture di
verse travel behaviors observed in the population, especially the 
P(rg) corresponding to the individuals’ characteristic distance 
that has been empirically observed to have a high population het
erogeneity. Unlike the one-shot generation of a complete trajec
tory as in the GAN model, DeepMobility simulates the mobility 
decision process of an individual and generates the next visit 

location in a sequential way, achieving significant realism 
improvement.

To test the capability of DeepMobility in generating complex 
mobility flows at the population level, in Fig. 3e–h, we measure 
the CPC between the generated flows and the real flows for each 
model, observing a remarkable performance improvement up to 
120% (Beijing, 0.787 vs. 0.357), 112% (Shanghai, 0.686 vs. 0.324), 
136% (Shenzhen, 0.560 vs. 0.216), and 81% (Senegal, 0.650 vs. 
0.359). Our DeepMobility also achieves much less absolute error 
(MAE), equivalent to 17–30% of the best-performing baseline 
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Fig. 3. Comparison of generation realism, in terms of individual and population scales. For the four empirical datasets, comparison of the performance in 
terms of JSD-based metrics (a–d), including Jump length, DailyLoc, Radius, Duration, and Trip distance, of the continuous time random walk (CTRW), 
exploration and preferential return model (EPR), TimeGeo, GAN, and DeepMobility (Ours), for Beijing (a), Shangahi (b), Shenzhen (c), and Senegal (d). 
Lower value of JSD-based metrics denotes a closer distribution with real data and thus represents better performance, and our framework clearly 
achieves the best performance. e–h) Comparison of the performance in terms of common part of commuters (CPC) of the CTRW, EPR, TimeGeo, GAN, and 
Ours. i–l) Statistical illustration of the model-predicted and real values of population flows for the four datasets. Symbols denote the average number of 
generated flows for each bin and lines represent the 10–90% percentiles. The dashed line is a perfect agreement between the observed flows and the 
generations. The points below symbols are scatter plot for each flow between a region pair. Our framework systematically outperforms other models.
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model in four different cities (online supplementary material, 
Table 3). To compare further the generated flows with the empir
ical data, we measure the number of travels between each pair of 
locations (Fig. 3i–l). Unlike our DeepMobility, both the mechanistic 
model TimeGeo and the deep-learning model GAN generate un
realistic flows that deviate from the empirical data. In particular, 
the GAN model tends to generate overestimated flows for those 
less-traveled pairs (number of travels <1, 000), and the TimeGeo 
model performs the opposite in the cases of Shanghai and 
Shenzhen. Correspondingly, in Figs. S5 and S6, we plot the mobil
ity networks describing the observed flows and the flows gener
ated by three models (DeepMobility, GAN, and TimeGeo), finding 
that DeepMobility captures the overall structure of the flow net
work while GAN and TimeGeo generate much denser connections 
and sparser connections, respectively.

To understand the origin of the aforementioned exceptional 
ability to capture intricate complexity within empirical urban mo
bility data, we remove two collaborative learning mechanisms in 
DeepMobility and retrain three model variants to evaluate their 
generation realism (Table 1). We find that, compared to a vanilla 
version without the designed collaborative learning mechanisms, 
DeepMobility achieves a significant improvement of the CPC up to 
60.6% (Beijing), 29.2% (Shanghai), 20.7% (Shenzhen), and 8.5% 
(Senegal). It confirms the necessity of designing such a deep gen
erative collaboration network to resolve the current discrepancy 
between individual mobility modeling and population mobility 
modeling. Furthermore, bottom-up interaction modeling and top- 
down feedback refinement are incorporated in different modules, 
allowing us to remove either of them to compare performance, 
finding that incorporating population influences into the decision 
process of individual-level movements contributes more than re
fining the learning of individual mobility behavior. Note that nei
ther of the two designed mechanisms hurts generation realism at 
the individual mobility level, showing their strong compatibility.

By generating realistic individual trajectories and the resulting 
population flows at the urban scale, DeepMobility successfully 
preserves the organic nature of the urban population, as 

individuals’ daily life activities are closely related to their mobil
ity. To demonstrate its capability of reconstructing individuals’ 
activities at various urban locations, we apply a location type in
ference method (49) to identify a collection of home locations 
from the generated trajectories, finding that their spatial distribu
tion is in good agreement with the empirical data (Fig. S7 and 
Section S3.2). Another important empirical observation of urban 
daily life through a mobility lens is the distribution of the most fre
quent daily mobility networks, i.e. daily motifs (53). As we show in 
Fig. S8, the distribution of the identified nine distinct motifs is 
again consistent with the empirical data, with JS divergence sta
tistics <0.084 in four cities (Section S3.2).

Reproduction of scaling laws governing human 
mobility
Researchers have devoted considerable effort to understanding 
human mobility, leading to the derivation of numerous mobility 
laws documented in the literature. To validate DeepMobility’s abil
ity to replicate empirically observed scaling laws, we analyze the 
generated trajectories and flows. Jump length Δr, which quantifies 
the spatial displacement between consecutive stops, follows a 
truncated power-law distribution, p(Δr) ∼ (Δr+Δr0)−β1 exp(−Δr/κ1), 
as shown in Fig. 4a–d. The scaling exponent β1 (∼1.2--1.3) is consist
ent across cities and aligns well with empirical values (∼1.2--1.3). 
However, β1 is smaller than earlier reports (∼1.75), indicating po
tential differences in the underlying mechanisms. This discrep
ancy can be attributed to variations in spatial regularity, as 
evidenced by the radius of gyration rg β2 ∼ (1.10, 1.17), as shown 
in Fig. 4e–h (vs. 1.65 (21)). These findings highlight the increased 
heterogeneity of travel patterns in the generated data, which chal
lenges mechanistic models and simpler deep-learning ap
proaches. Notably, the GAN model fails to reproduce these 
patterns, confirming the importance of learning to simulate indi
vidual travel decisions as in DeepMobility.

Another critical scaling property is Zipf’s law (21), which gov
erns the frequency fk of the kth most visited location, fk ∼ k−ζ 

Table 1. Ablation study on the two collaborative learning mechanisms.

Individual-level metrics Population-level metrics

Model Dailyloc Jump length Trip distance Duration Radius MAE CPC

Beijing
w/o M1 and M2 0.011 0.066 0.023 0.013 0.044 62.54 0.490
w/o M1 0.008 0.067 0.021 0.018 0.058 44.34 0.587
w/o M2 0.010 0.063 0.019 0.015 0.046 61.09 0.507
DeepMobility 0.021 0.058 0.023 0.026 0.044 22.68 0.787

Shanghai
w/o M1 and M2 0.004 0.033 0.041 0.004 0.070 100.7 0.531
w/o M1 0.002 0.028 0.011 0.003 0.025 78.84 0.635
w/o M2 0.003 0.042 0.030 0.003 0.043 100.0 0.545
DeepMobility 0.003 0.029 0.008 0.005 0.025 63.12 0.686

Shenzhen
w/o M1 and M2 0.100 0.141 0.042 0.013 0.148 346.5 0.464
w/o M1 0.077 0.150 0.063 0.022 0.170 266.4 0.548
w/o M2 0.073 0.158 0.053 0.011 0.156 287.4 0.490
DeepMobility 0.070 0.046 0.019 0.015 0.073 253.0 0.560

Senegal
w/o M1 and M2 0.028 0.095 0.035 0.006 0.056 324.6 0.599
w/o M1 0.053 0.035 0.004 0.006 0.032 255.1 0.620
w/o M2 0.009 0.044 0.035 0.007 0.036 277.9 0.610
DeepMobility 0.010 0.037 0.019 0.006 0.034 223.0 0.650

M1 stands for the bottom-up interaction modeling at the generator. M2 stands for the top-down feedback refinement at the critic. The results show that the two 
designs have major contributions to the population-level performance, and at the same time, capture the mobility patterns at the individual level. Bold values 
indicate the best result and italic values indicate the second-best result.
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(ζ ∼ 1.2), arising from the memory effect that individuals tend to 
return to previously visited locations preferentially. By encoding 
visitation history, DeepMobility captures the preferential return 
mechanism, resulting in fk exponents (ζ ∼ 1.0 − 1.1) that are close 
to empirical values (Fig. 4i–l). When the memory effect is removed, 
the distribution of fk becomes more uniform, similar to scale-free 
random walk models (21) (Fig. S9). Additionally, DeepMobility 

captures other memory-related behaviors, such as the sublinear 
growth in the number of distinct locations visited (24) 
(Fig. S10a–d and Section S3.3) and ultraslow long-term spatial 
movements (21) (<logarithmic growth, Fig. S10) with time evolution 
(Fig. S10e–h and Section S3.3). These patterns collectively contrib
ute to the high predictability of the generated trajectories (Fig. S11
and Section S3.3), which is consistent with earlier findings (23).

Fig. 4. Generated mobility data vs. empirical data regarding different mobility laws at both individual and population levels. a–d) Our generated mobility 
data reproduces the truncated power law of jump length (Δr), with the distribution approximated by p(x) ∼ (x + x0)−β exp ( − x/xcut). The solid black line 
represents the fitting result of Δr, with β = {1.28, 1.25, 1.34, 1.28} and R2 = {0.976, 0.942, 0.971, 0.914} for the four datasets, respectively. e–h) Similar results 
of the reproduced truncated power law of radius of gyration (rg), with β = {1.20, 1.28, 1.22, 1.32} and R2 = {0.991, 0.981, 0.976, 0.954}. i)–l) The generated 
mobility data reproduces Zipf’s law of visitation frequency, where the visitation frequency fk to the kth most visited location is well approximated by a 
power law P(k) ∼ k−ζ , with ζ = {1.15, 1.05, 1.01, 1.10} and R2 = {0.973, 0.981, 0.966, 0.963}. m–p) The aggregated location visitation at the population level 
also reproduces the distance-frequency scaling law of mobility flow, where the number of visitors to a location with a specific frequency ρ(r, f ) is 
well-described by a power law fitting ρ(r, f ) = μ/(rf )η, with η = {2.01, 2.04, 2.09, 2.08} and R2 = {0.926, 0.927, 0.940, 0.964}.
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At the population level, DeepMobility reproduces the “spectral” 
flow ρi(r, f ), where ρi(r, f )—the number of visitors with visitation 
frequency f to a location i from distance r—follows a universal 
power law, scaling inversely with r · f (32) (Fig. 4m–p). This is 
achieved through collaborative learning mechanisms, as 
GAN-based models or simplified versions of DeepMobility fail to 
replicate such patterns (Fig. S12). Furthermore, DeepMobility re
produces other empirical patterns, including power-law distribu
tions of origin–destination trips (30) and statistical properties of 
demand networks (31) (Figs. S13 and S14). The remarkable con
sistency between mobility patterns reproduced by DeepMobility 
and fundamental laws established by physicists (21, 23, 24, 30, 
32) suggests that DeepMobility successfully captures the intricate 
interplay between individual heterogeneous movements and col
lective behaviors in a manner unmatched by previous models.

DeepMobility captures the inherent mechanism of 
complex urban mobility that is geographically 
transferable
For generative models of urban mobility, the capability for geo
graphic transferability reflects their ability to generalize in captur
ing consistent mobility patterns across different cities. This is also 
essential for DeepMobility, as it means the model captures the in
herent mechanisms of complex urban mobility, rather than mere 
data memorization. Moreover, due to the increasing cost of data 
acquisition, high-quality human mobility data is often scarce or 
even absent in some underdeveloped urban regions. In real-world 
applications of urban mobility generation, practitioners may have 
to develop generative models using available mobility data col
lected from some cities and then use these models to generate ur
ban trajectories in other targeted cities without any mobility data.

To accommodate transferable mobility generation between 
different cities, we improve the model design of DeepMobility 
(Materials and methods, Section S1.5), train this improved model 
on mobility data of one city and test its generation realism in other 
cities, including both transfers across Chinese datasets and trans
fers to international datasets. To verify the geographic transfer
ability of DeepMobility, in Fig. 5a–d, we calculate evaluation 
metrics of generation realism at both individual and population 
levels and compare with three mechanistic models (Complete re
sults are shown in Table S5.) Note that, unlike deep-learning mod
els such as GANs, mechanistic models are intrinsically 
transferable. We find that DeepMobility-generated trajectories 
have the highest statistical similarity to real data in terms of five 
individual-mobility metrics, i.e. (Δr, rw, rg, Δt, Sd), and the result
ing flows reconstruct realistic population-level mobility with the 
highest accuracy (CPC and MAE). In particular, DeepMobility 
trained in one city reproduces the spatio-temporal mobility pat
terns (P(Δr), P(Δt)) in another city, with JS divergence <0.1, and fi
nally captures the population heterogeneity (P(rg)). The 
improvement in flow generation is significant, over 60% (CPC) in 
3 × 2 source-target pairs. In Fig. 5e–g, we show complete results 
of transferability evaluation for P(Δr), P(Δt) and flow similarity, 
finding that the transferred DeepMobility is on par with its coun
terpart trained on the target city. Individual-level trajectories are 
equally realistic (JS divergence < 0.1) and population-level flows 
yield CPCs that are remarkably close to nontransferred ones (56– 
95%). Notably, even when tested on international datasets— 
such as Beijing to Senegal, Shanghai to Senegal, and Shenzhen 
to Senegal—where urban infrastructure, data availability, and 
mobility dynamics differ significantly, the model exhibits robust 
transferability (JS divergence < 0.1, CPC > 0.4). It effectively adapts 

from data-rich environments to data-scarce regions while main
taining high accuracy. These results indicate the potential cap
ability of extending DeepMobility to generate realistic mobility 
data with high utility for any given cities around the world.

Discussion
Recent advancements in generative AI technologies have marked
ly enhanced content generation capabilities, spanning text, im
ages, and videos. However, generating human behavior, in 
contrast to these forms of content, presents a more formidable 
challenge due to the complexity of intricate linkages between in
dividual actions and collective population dynamics. Our re
search, focusing on human mobility behavior as an initial 
endeavor, demonstrates that a novel generative deep-learning ap
proach, enriched with effective collaborative learning mecha
nisms, can successfully bridge this gap and enable the 
generation of complex urban mobility data across various cities. 
This development further implies, with minimal urban context in
formation on demographics and geography, how generative AI 
helps generate a vibrant, “organic” urban population with intri
cate dynamics by modeling the way individuals interact, engage, 
and utilize services in the course of their daily movements.

This new deep learning approach is designed to generate both 
individual movements and the resulting population flows in a 
city, making it possible to answer a long-standing question of 
whether deep-learning models can capture underlying mecha
nisms driving complex urban mobility across both individual 
and population levels. Our results of reproducing mobility scaling 
laws give a “yes” answer to this question (Fig. 4), confirming the 
importance of achieving collaborative learning between individ
ual and population mobility. In this regard, machine intelligence 
can further augment understanding and learning of complex 
mechanisms behind individuals’ mobility decisions (19, 54). Our 
model design has made this possible by supporting an in-depth 
analysis of the behavioral patterns learned by the policy network, 
where we have uncovered interpretable mechanisms regarding 
human mobility decisions (Section S3.5).

An interesting question here is how trustworthy the designed 
deep model is in generating realistic synthetic data without com
promising privacy since empirical studies have found that individ
uals can be identified from mobility data due to the uniqueness of 
their trajectories (55, 56). To that end, we examine the overlap ra
tio between real and generated trajectories, and also the identifi
ability of a real individual from generated trajectories (Section S3. 
6). We find that, for most individuals in real data, their trajectories 
share only a small portion with the most similar generated trajec
tories, and it is mathematically infeasible to identify a real individ
ual when mixed with generated ones (Fig. S17). Therefore, the 
proposed deep generative model does not simply “memorize” 
the real mobility trajectories, but instead learns the underlying 
mechanisms driving human mobility patterns.

Although our results demonstrate the model’s ability to capture 
complex urban mobility dynamics, we acknowledge the potential 
biases inherent in the mobility data used for training. These biases 
arise from the data collection process, which primarily relies on 
mobile phone usage. While mobile phone penetration rates are 
high in modern society, they can still vary across demographics 
and regions.To minimize these biases as much as possible, we em
ployed random sampling techniques to obtain individual trajector
ies, reducing the risk of introducing additional biases. We also 
validated the model’s generalizability across diverse cities. 
Nonetheless, these biases highlight the importance of further 
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investigation into how variations in data sources and collection 
methods impact the reliability and accuracy of generated mobility 
patterns. Future efforts could integrate additional data sources, 
such as census information or transport infrastructure data, to en
hance the robustness and representativeness of the generated data.

From a practical standpoint, our developed DeepMobility frame
work has demonstrated the potential to generate realistic and com
plex urban mobility data. This is particularly significant in cities 
lacking available mobility data, providing immediate and valuable 
applications in the fields of epidemic disease containment, traffic 
engineering, and urban planning (14, 15). Looking ahead, the 
framework can be enhanced by integrating the impact of urban 
road networks on human mobility, thus offering a more compre
hensive modeling approach (57). In terms of future applications, 
DeepMobility has the potential to evolve into a transparent tool 
for constructing open urban mobility data that could offer detailed 
insights into population movements within cities globally. This ad
vancement would serve as a valuable complement to the current 
static and coarse-grained mapping of world populations (58, 59). 
By providing a more nuanced understanding of urban mobility pat
terns, DeepMobility will be instrumental in supporting the develop
ment of sustainable and livable cities worldwide (60, 61).

While this study establishes a strong foundation for generating 
urban mobility data, several opportunities remain for further ex
ploration. First, integrating additional contextual data, such as 
land use, transportation networks, and socioeconomic indicators, 
could enhance the model’s ability to capture regional variations 
and provide more context-aware mobility simulations. Second, 
uncovering interpretable mechanisms and patterns from deep 
learning-based neural networks is critical for advancing the use 
of artificial intelligence in mobility science, enabling deeper in
sights into human mobility behaviors. Lastly, extending the 
framework to other domains, such as evacuation planning or dis
aster response, could unlock new possibilities for addressing 
pressing urban challenges. These directions will not only enhance 
the capabilities of DeepMobility but also expand its potential im
pact across a wide range of applications.

Materials and methods
M1. Datasets
We use four datasets to demonstrate the DeepMobility generation 
framework. The first two datasets (DS1, DS2) use the anonymized 

a b

c

e f g

d

Fig. 5. Geographic transferability of DeepMobility. The models are trained on one source city and then evaluated on other target cities without finetuning. 
a–d) The generation performance on the target city Shanghai with different source cities [a, b) Beijing and c, d) Shenzhen] regarding both individual and 
population scales. e, f) The performance of DeepMobility on all source-target city pairs in terms of jump length e), duration f), and CPC g). The size of the 
circle denotes the metric value, and the deeper color denotes better performance.
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location record of about 1.8 million users in Beijing, China and 0.32 
million users in Shenzhen, China, respectively. These users have 
signed up for a location-based service and their locations are re
corded every hour for a 1-month period. The third dataset (DS3) 
covering Shanghai (China) consists of around 1.9 million anony
mized users of China’s major telecom company. The data are col
lected during a 1-week period for billing purposes, recording the 
location at the beginning and the end of each service (a call, an 
SMS, or an Internet connection). The fourth dataset (DS4) of 
Senegal is based on anonymized call detail records (CDRs) from 
about 0.3 million users during a 2-week period with a temporal 
resolution of 10 min. These datasets capture daily human move
ments at both individual and population levels, i.e. trajectories 
and the resulting flows. The details of data processing and feature 
extraction are provided in online supplementary material, Section 
S1.1.

M2. DeepMobility
GAIL-based framework
To solve the generative learning problem of urban mobility in Eq. 
(1), we resort to generative adversarial imitation learning (GAIL) 
(62) due to the analogy between mobility modeling and decision 
policy learning. Specifically, we define the set of locations L as 
the action space A, and the set of visitation history X<t as the state 
space S. Then learning π(lt|x<t) equals to finding optimal π(s, a) in 
GAIL. Moreover, to describe the complex decision process of a 
group of individuals, we further extend MDP into decentralized 
partially observable MDP (Dec-POMDP) (63) that can be repre
sented by a 7-tuple <S, {An}, P, R, {Ωn}, O, γ>: 

1. S is a set of states and each state s consists of all agents. In the 
partially observable setting, agents have no access to the 
overall state.

2. An is a set of actions for agent n, and A = ×nAn is the set of joint 
actions. Specifically, an action an,t indicates the next place to 
visit for individual n at time t.

3. P is a set of conditional transition probabilities between 
states, with P(s′|s, a) denoting transition probability from s 
to s′ given a joint action a. The transition is deterministic in 
this problem.

4. R : S × A 7! R denotes the reward function r(s, a).
5. Ωn is a set of observations for agent n, and Ω = ×nΩn is the set 

of joint observations.
6. O is a set of conditional observation probabilities, i.e. 

{O(o, s, a)}. The observation is also deterministic in this prob
lem. Specifically, for an individual n at time t and location lt−1, 
his/her observation on,t combines both historical movements 
X<t = [x1, x2, . . . , xt−1] and the distribution of population 

movements from lt−1 to other locations, denoted as F̃lt−1
. The 

latter represents a limited ability of individuals to observe 
other people’s travel decisions.

7. γ ∈ [0, 1] is the discount factor.

Based on the above formulation, we propose a GAIL-based ap
proach for learning π(lt|x<t) that aims to capture human mobility 
patterns at both individual and population levels. The preliminary 
on GAIL is detailed in Section S1.2.

Collaborative learning mechanisms
In order to establish a bidirectional link between individual and 
population levels of mobility modeling in DeepMobility, we design 

the bottom-up and top-down collaborative learning processes, 
respectively.

(1) Bottom-up interaction modeling. We begin by developing a 
generator module capable of creating interconnected movements 
from a big urban population. Aside from personal taste, an indi
vidual’s travel decisions are heavily influenced by social interac
tions (17, 64). For example, trajectories traveled by a person 
show his/her daily pattern, implying a memory effect in which 
historical movements influence future mobility behavior. 
Meanwhile, an individual may visit some unexpected areas ad
vised by his or her friends on occasion, suggesting social interac
tions among a population of individuals. To directly characterize 
these interactions for N individuals, substantial pairwise linkages 
(∼N2) would have to be computed, which is not feasible. To ad
dress this issue, we propose the formulation of the mobility model 
πθ(at|ot) as a composite of two parameterized decision processes:

π(at|ot) = Collab πθI (at|X<t), πθP (at|F̃lt−1
)

( 􏼁
, (2) 

where πθI (at|X<t) and πθP (at|F̃lt−1
) represent two distinct decision 

policies considering individual preference and population influ
ence, respectively. The first part πθI (at|X<t) captures individual 
preference by learning movement regularities from the historical 

trajectory X<t, while the second part πθP (at|F̃lt−1
) characterizes the 

social interaction influence from population movements F̃lt−1 

that are shaped by the urban environment. The collaboration be
tween these two parts is designed as making a discrete choice be
tween them according to a parameterized Bernoulli distribution 
Bernoulli(ut), where ut = Uθu (X<t) ∈ [0, 1] characterizes a learned 
probability that measures individual’s uncertainty on following 
his/her preference. Formally,

π(at|ot) = πθI (at|X<t), Prob = 1 − ut

πθP (at|F̃lt−1
), Prob = ut

􏼚

. (3) 

If the individual uncertainty on historical visitation is high, this in
dividual is more likely to follow a population-level decision (πθP ) in
stead of his/her preference (πθI ). The designed collaboration 
between two decision processes successfully incorporates popu
lation influences at the individual level, achieving bottom-up so
cial interaction modeling of complex urban mobility.

(2) Top-down feedback refinement. Next, we design a critic 
module that improves the generator in terms of capturing bidirec
tional influence between individual level and population level of 
urban mobility. The critic Vϕ approximates the value function of 
mobility decisions at the generator πθ and guides the optimization 
direction of πθ accordingly using policy learning algorithms like 
PPO (47). (Detailed in Section S1.2.) As πθ generates individual 
movements that are then aggregated into population flows, Vϕ 

should evaluate the value of each movement based on not only 
its fitness to individual-level patterns but also its contribution to 
aggregated flows. The former is completed by an individual critic 
Vϕi

(ot) that learns to predict the correct value function of individ
ual movements based on whether πθ(at|ot) matches patterns in 
empirical data. However, the latter is far more challenging due 
to the high-dimensional space of joint actions at ∈ ×nAn and ob
servations ot ∈ ×nΩn, arising from the entire population. 
Therefore, to solve this issue, we propose to decouple the joint 
space optimization by decomposing the population critic 
Qϕp

(ot, at) from the entire population (∼N) into a sum of 
Qϕp

(on,t, an,t) from each individual. Formally,

Qϕp
(ot, at) =

􏽘N

n=1

Qϕp
(on,t, an,t). (4) 
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Then, we optimize Qϕp 
using Monte-Carlo policy evaluation as fol

lows:

min
ϕe

EΠ (Q̂Π(o, a) − Qϕp
(o, a))2

􏽨 􏽩
,

where Q̂Π(o, a) = Êτ
􏽘T−t

k=1

γk−1rt+k | ot = o, at = a

􏼢 􏼣

,

rt+k = r(ot+k, at+k) =
F

t+k,data − F
t+k,model

F
t+k,data

,

and at+k ∼ Πθ( · |ot+k).

(5) 

The global reward rt measures the relative error between the real 
flow matrix F

t,data and F
t,model generated by following joint pol

icy Π(at|ot). Note that 
∂Qϕp (ot , at)

∂Qϕp (on,t , an,t )
≥ 0, ∀i, thus the optimization of 

Qϕp 
yields the same optimization direction on each Qϕp ,n. In this 

way, we manage to make the optimization of the population-level 
critic Qϕe

(ot, at) feasible by turning global optimization into a ser

ies of coordinated optimization processes at the individual level, 
i.e. with respect to Qϕp

(on,t, an,t). Finally, we combine value estima

tions of πθ(at|ot) from two critics, i.e. Vϕi
(ot) and Qϕp

(ot, at), and up

date the generator parameters using PPO. (Detailed in Section S1. 
3.) The above design of value decomposition from population level 
to individual level achieves the top-down refinement of πθ(at|ot) 
based on feedback from the quality of generated flows.

Generator architecture
Figure S1 shows the network architecture of the mobility 
generator.

(1) State encoder. We first utilize a GRU to learn the state re
presentation of the historical trajectory. Specifically, we trans
form previously visited locations represented by one-hot 
encoding, along with temporal information, into vectors et by an 
embedding layer; then we learn a representation of the individu
al’s historical trajectory ht using a GRU network, which captures 
non-Markov, memory effects of individual mobility.

(2) Hierarchical decoder. Next, we adopt a hierarchical struc
ture at the trajectory decoder that first outputs the next region rj 

to visit and then selects a specific location lj that belongs to rj.
In the first stage, we design an interaction-fused region selec

tion process that characterizes the influences from both individ
ual preference and social interaction. As in Eq. (2), we select rj 

according to an uncertainty-based probability score ut, which is 
obtained based on the following multihead uncertainty estima
tion module:

ut = Sigmoid(var(vm)),

where vm = MLP(ht) =

v1

v2

..

.

vH

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠

(6) 

is a H-dimensional vector whose variance across different heads 
{1, 2, . . . , H} is used to estimate the state uncertainty. Note that 
we use the Sigmoid function to transform it into a probability 
score between 0 and 1. If the estimated uncertainty ut is high, 
the individual will be more likely to consider following collective 
behaviors. Otherwise, the individual prefers to follow her own 
preference based on historical memory.

As for the specific network architecture that simulates the re
gion selection process based on individual preference, we utilize 
an MLP to transform ht into an n-dimensional vector and normal
ize it by a softmax function as follows:

πθI (rj|X<t) =
exp (MLP(ht))j
􏽐

exp (MLP(ht))
, j ∈ {1, 2, . . . , Nr}, (7) 

where Nr is the number of regions, and πθI (rj|X<t) denotes the prob

ability of visiting region rj.
As for simulating the region selection process based on collect

ive behaviors, we consider the spatial movement distribution of 
populations originating from the current region to other regions. 
We utilize the follow network architecture to learn a 
Nr-dimensional probability πθP (rj|F̃lt−1

), j ∈ {1, 2, . . . , Nr} as in Eq. 
(2). The vector is calculated in the following steps. First, an embed
ding layer transforms region attributes, including the population 
xr,pop and POI distribution xr,poi, into region representation er, 
then the input vector eij is obtained by concatenating the re
presentation of the origin region eri

, the representation of the des
tination region erj

, the distance representation e(dij) between two 
regions, and the time representation e(t). Second, the input vectors 
eij are all fed into the same network, which is an MLP with 10 64D 
hidden layers and has the LeakyReLu as the activation function. 
The last layer outputs the probability to observe a trip from the 
origin region ri to destination regions rj, j ∈ {1, 2, . . . , Nr}. The 
above process is formulated as follows:

er = Concat(Wpopone-hot(xr,pop) + Wpoione-hot(xr,poi)),

eij = Concat(eri
, erj

, e(dij), e(t)),

πθP (rj|F̃lt−1
) =

exp (MLP(eij))j
􏽘

exp (MLP(eij))
, j ∈ {1, 2, . . . , Nr}.

(8) 

In the second stage, based on selected region rj, we design another 

location-selection process that chooses the next location belong
ing to rj. To cope with a varied number of locations across different 

regions, we utilize an attention-based network to calculate the 
probability of visiting a specific location lj within rj as follows:

π(lj) =
exp (uT

j uw)
􏽘

k

exp (uT
kuw)

, j ∈ {1, 2, . . . , Nl,r},

where u j = tanh(MLP(e j))

and e j = Concat(ht, el,j, e(dij), e(t)).

(9) 

Nl,rj 
is the number of locations in region rj, ht is the history re

presentation obtained from the state encoder, el,j = one-hot(lj) is 

the embedding of the location, e(dij) is the representations of dis

tance between current location li and target location lj, and e(t) 

is the representation of the current time. uw queries the location 
characteristics associated with the current state, which is a ran
domly initialized vector and is updated in the training procedure.

Discriminator architecture
We define multilevel reward functions that give a comprehensive 
evaluation of the generation outcome with respect to individual 
and population levels, respectively. We characterize the two re
ward functions separately, where the first individual-level reward 
function is characterized by a neural network-based discrimin
ator Dϕ with parameters ϕ, and the second population-level re
ward function is directly available. Figure 2 illustrates the 
discriminator architecture. Specifically, the multilevel rewards 
are calculated as follows:

rI,t = log(Dϕ(ot, at)), (10) 

rP,t =
F

t,data − F
t,model

F
t,data

, (11) 
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where ot, at denotes the state and action at time t, F ∈ RNt×Nr×Nr is 
the flow matrix, Nt is the number of time periods, rI,t denotes the 
individual-level reward, and rP,t denotes the population-level re
ward. Dϕ is trained by a binary classification task that distin
guishes between real and generated state-action pairs. We 
adopt a non-parametric method for rP,t, which calculates the rela
tive distance between the generated flows and real-world cases.

As for the network architecture of Dϕ shown in Fig. S2, we also 
design a hierarchical structure that evaluates the decisions at two 
stages, i.e. region and location, respectively. At the region level, 
the state ot is the historical sequence of visited regions, and the ac
tion at is the selected region based on the state. Correspondingly, 
the state and action at the location level are the historical location 
sequence and the selected locations, respectively. For both levels, 
the network consists of two components: (i) an embedding layer to 
transform the historical sequence into vector representations, (ii) 
a GRU to obtain the sequence representation, and (iii) an output 
layer with a Sigmoid activation function to produce the classifica
tion result based on the sequence representation. The discrimina
tor’s output denotes the probability that the state-action pair 
comes from the real data. The nonparametric discriminator cal
culates the distance between real and generated population flows.

Critic architecture
Figure S3 shows the network architecture of the individual-level 
critic and population-level critic. The individual-level critic shares 
the same state encoder with the generator, including the 
Embedding layer and GRU layer, to obtain state representations. 
Then, we adopt an MLP to predict the individual state value 
Vϕi

(ot). The population-level critic is modeled by another MLP net
work, which takes in the concatenation of the state embedding 
and action embedding. Specifically, the state embedding is ob
tained by a similar network as the individual-level critic, and the 
action embedding is obtained by an embedding layer. The joint 
value function Qϕp

(ot, at) is obtained by aggregating the value 
Qϕp

(on,t, an,t) from each individual n. Mathematically, the above 
process is formulated as follows:

Vϕi
(ot) = MLP(GRU(Emb(ot))),

Qϕp
(on,t, an,t) = MLP(Concat(GRU(Emb(on,t)), Emb(an,t))),

Qϕp
(ot, at) =

􏽘N

n=1

Qϕp
(on,t, an,t),

(12) 

where on,t and ,an,t are the state and action of the nth individual, ot 

and at are the joint state and action, and Emb denotes Embedding 
layers.

Transferable mobility generation
To accommodate transferable mobility generation between dif
ferent cities, we refine the design of DeepMobility as follows. 
First, we enhance the transferability of the location representa
tion used in the generator. The widely used embedding technique 
(35, 38, 65) is no longer applicable due to a lack of transferability. 
Instead, we encode all locations in different cities using two char
acteristics, visitation popularity and POI number grouped by cat
egory. These two features reflect important properties about 
location attractiveness and land use profile, respectively, and 
should have a general impact on individuals’ travel decisions, in
dependent of the city in which they are located. Moreover, they 
are both location-based aggregation metrics that can be readily 
collected at a low cost from location data providers (such 
as Safegraph) and crowd-sourcing platforms (such as 

OpenStreetMap). The detailed design of transferable location re
presentation is presented in Fig. 4 and Section S1.5. Second, to fur
ther guarantee the generalization capability of DeepMobility, we 
remove the design of top-down feedback refinement, as it pro
vides accurate but prone-to-overfitting supervision on the gener
ated flows during training. Then, we train this improved 
DeepMobility on mobility data of one Chinese city and test its gen
eration realism in the other two Chinese cities. Note that we 
choose a generator with good transferability rather than one 
that produces statistically similar data.
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Supplementary material is available at PNAS Nexus online.
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