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Abstract

City-scale individual movements, population flows, and urban morphology are intricately intertwined, collectively contributing to the
complexity of urban mobility and impacting critical aspects of a city, from socioeconomic exchanges to epidemic transmission. Existing
models, derived from fundamental laws of human mobility, often capture only partial facets of this complexity. This article introduces
DeepMobility, a powerful deep generative collaboration network designed to encapsulate the multifaceted nature of complex urban
mobility within one unified model, bridging the gap between the heterogeneous behaviors of individuals and the collective behaviors
emerging from the entire population. As the first generative deep learning model to integrate micro- and macrolevel dynamics through
bidirectional collaboration, DeepMobility generates high-fidelity synthetic mobility data, overcoming key limitations of prior approaches.
Our experiments, conducted on mobility trajectories and flows in cities of China and Senegal, reveal that unlike state-of-the-art deep
learning models that tend to “memorize” observed data, DeepMobility excels in learning the intricate data distribution and successfully
reproduces the existing universal scaling laws that characterize human mobility behaviors at both individual and population levels.
DeepMobility also exhibits robust generalization capabilities, enabling it to generate realistic trajectories and flows for cities lacking
corresponding training data. Our approach underscores the feasibility of employing generative deep learning to model the underlying
mechanism of human mobility and establishes a versatile framework for mobility data generation that supports sustainable and livable cities.
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Significance Statement

Urban mobility, a critical factor in shaping sustainable and livable cities, encompasses complex interactions between individual
movements and population flows. Traditional models often fall short in capturing the full spectrum of these dynamics. Our study
introduces DeepMobility, a novel deep generative collaboration network designed to encapsulate the multifaceted nature of urban
mobility within a unified framework. Unlike existing deep learning models, DeepMobility effectively learns and reproduces universal
scaling laws of human mobility at both individual and population levels, demonstrating robust generalization capabilities across di-
verse urban contexts. This advancement not only enhances our understanding of urban dynamics but also provides a powerful tool
for urban planning and management, contributing to the development of resilient and efficient cities.

Introduction the complexity of urban mobility (13). Correctly modeling these
complex human activities within cities is essential for managing
energy consumption (14), planning infrastructure (15, 16), and
monitoring urban growth (17, 18), all of which are crucial for cre-
ating sustainable and livable urban environments (19).

In the pursuit of understanding the intricate dynamics of urban
mobility, statistical physicists have increasingly focused on the

Human mobility, an indispensable component of urban function-
ality, serves as a linchpin in establishing essential connections
across diverse city regions, thus facilitating residents’ access to
and utilization of urban services (1, 2). Beyond fostering commer-
cial interactions and innovation diffusion (3, 4), it concurrently
engenders multifaceted challenges including traffic congestion

(5) and epidemic transmission (6, 7). Consequently, human mobil- analysis of empirical mobility data to uncover universal patterns

ity plays a pivotal role in shaping urban dynamics across cultural, i human mobility since the turn of this century (20-22). This
economic, and environmental dimensions (8-12). The intricate  leads to the discovery of scaling laws governing both individual
interplay of city-scale individual movements, resulting popula- movements (20, 21, 23-27) and population flows (22, 28-32).
tion flows, and urban morphology collectively contributing to Individual human movements, unlike physical particles, can be
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approximated by a scale-free Lévy flight, with truncated power
law distributed spatial distance (20, 21), up to a distance charac-
terized by the individual’s radius of gyration, which also follows
truncated power law distribution (21). Conversely, temporal
memory effects, representing the tendency to revisit particular lo-
cations, are characterized by the scaling laws including Zipf's law
of visitation frequency (21), sublinear growth in the number of
unique locations visited (24), and an ultraslow diffusion process
(24). In terms of collective behaviors, the flow of population mobil-
ity can be broadly characterized by the gravity law (28), which pos-
its that the probability of movement between regions is
proportionate to their respective populations. Furthermore, this
flow can be more precisely predicted by the radiation model
(22). Temporal regularities emerge as well, notably the distance-
frequency scaling law (32), revealing an inverse square relation-
ship between the number of visitors to a location and their visit
frequency. Additionally, power law distributions govern the num-
ber of trips between regions and trips originating or ending in spe-
cific regions (30, 31). Despite the success in identifying these
fundamental laws, it is essential to note that the existing models,
often developed through theoretical derivations, are limited in
their capacity to fully encompass all facets of these laws. The sig-
nificant disparities among various mobility laws, particularly
those stemming from distinct levels of analysis of individual
movements vs. population flow, present a significant challenge
in the pursuit of a unified theoretical model. Alessandretti et al.
(27) and Yan et al. (30) have made progress in bridging this gap
by exploring human mobility across different geographical scales.
These works offer insights into individual and population mobility
interplay but rely on simplified physical models, limiting their
adaptability to complex real-world scenarios.

Recent advancements in Al, particularly in the domain of deep
generative Al models, offer a promising alternative to mechanistic
approaches in constructing high-capacity models capable of cap-
turing various mobility laws. Deep learning models like generative
adversarial networks (GANs) (33) or variational autoencoders
(VAESs) (34) have demonstrated remarkable versatility in learning
the distribution of real-world mobility data, and generating syn-
thetic data with comparable statistical properties (35). Previous
research has successfully applied these models to specific model-
ing tasks, including the generation of human trajectories that
mimic individual movements (36-41) and the prediction of popu-
lation flows between pairs of regions (42-44). Notably, these deep
learning (DL) based models have shown higher accuracy com-
pared to traditional theoretical models (22, 28). However, despite
the considerable realism achieved by these DL-based models in
specific-level descriptions of urban mobility, they predominantly
focus on either individual trajectories or aggregated flows, but
cannot consider both simultaneously. The collective mobility pat-
terns emerge from the bottom-up aggregation of individual move-
ments, which in turn impose constraints that influence individual
behaviors. This bidirectional influence between individual and
population levels contributes to the complexity of urban mobility.
Yet, effectively characterizing this intricate interplay in deep gen-
erative models remains an unresolved challenge.

Inresponse to this challenge, we introduce DeepMobility, a pio-
neering generative deep learning model designed to capture the
multifaceted nature of complex urban mobility. Unlike traditional
approaches that rely on predefined rules, DeepMobility learns dir-
ectly from data, enabling a more flexible and nuanced representa-
tion of the interplay between individual preferences and
population-level trends. DeepMobility conceptualizes human
movement as a sequential decision-making process and employs

a GAN-based framework to train a deep generative collaboration
network for simulating human mobility behaviors. This neural net-
work comprises three components: a generator for producing indi-
vidual trajectories and aggregated population flows, a
discriminator for assessing the quality of these trajectories and
flows against real data, and a critic for providing guidance from
the discriminator so as to improve the generator. To characterize
the dynamic interplay between individual behaviors and broader
population trends, DeepMobility incorporates two innovative col-
laborative learning mechanisms: bottom-up interaction modeling
and top-down feedback refinement. The bottom-up approach, im-
plemented in the generator, effectively integrates social interac-
tions into individual movement patterns. Concurrently, the
top-down approach, functioning in the critic, allows for precise ad-
justments to individual behaviors based on aggregated population-
level flow patterns. In this way, it successfully bridges the heteroge-
neous behaviors of individuals and collective behaviors emerging
from the entire population to capture the multifaceted nature of
complex urban mobility. Compared with prior works (27, 30), our
approach introduces a deep learning-based framework that expli-
citly models the bidirectional interactions between individual pref-
erences and population dynamics through collaborative learning.
While these earlier studies focus primarily on understanding cross-
scale human mobility using simplified physical models, their reli-
ance on predefined assumptions and rules limits their ability to
generate realistic, high-fidelity synthetic mobility data. In contrast,
our objective is to accurately reproduce complex urban mobility
patterns, enabling practical applications in areas such as traffic en-
gineering, urban planning, and epidemic containment.

Utilizing data from three Chinese metropolises (Beijing,
Shanghai, Shenzhen) and Senegal, we trained DeepMobility mod-
els to generate human mobility trajectories and resulting flows
across urban regions at high spatiotemporal resolutions.
Notably, the model is trained exclusively on location data, with
no additional city-specific information incorporated as input dur-
ing training. Remarkably, our results show significant improve-
ments over previous models. DeepMobility demonstrates
advantages in five key statistical properties of trajectories and
achieves substantial enhancements in flow generation: up to
120% in Beijing, 112% in Shanghai, 136% in Shenzhen, and 81%
in Senegal. Importantly, the realism of the generated data is vali-
dated through a detailed comparison with real-world trajectories
at both the individual and population levels. Furthermore,
privacy-preserving evaluations confirm that DeepMobility does
not simply “memorize” the training data but instead learns under-
lying mechanisms, ensuring high utility while maintaining indi-
vidual privacy. A practical yet challenging application of
DeepMobility is generating realistic mobility data with high utility
for target cities lacking mobility data. We showcase that the geo-
graphically transferred DeepMobility performs on par with its
counterpart trained specifically for the target city, suggesting ro-
bust generation capabilities across varying urban contexts of
demographics and geography. Further investigation into the origin
of this exceptional performance reveals that DeepMobility is cap-
able of simultaneously reproducing existing mobility laws previ-
ously discovered by physicists, despite being purely data-driven
and free of predefined mechanisms. Notably, the parameters of
these mobility laws, such as those governing jump length (Ar)
andradius of gyration (r,), vary across different datasets, reflecting
the unique mobility characteristics of individuals in each urban
context. This variation highlights the model’s ability to adapt to di-
verse mobility patterns and ensures that the generated data au-
thentically mirrors the distinct individual and regional dynamics
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of each dataset. The emergence of this capability to reproduce
complex patterns indicates that DeepMobility goes beyond mere
data memorization, capturing the underlying mechanisms of ur-
ban mobility in a way other deep learning models have not.

Results

DeepMobility framework

To fully model the complex urban mobility with both the individual
movement laws and the emerging collective flow patterns, we pro-
pose a deep generative collaboration network for generating the
multiscale realistic human trajectories and the resulting mobility
flows in a city (Fig. 1) . We aim to learn a mobility model that simu-
lates an individual’s mobility decision-making process based on ob-
served data. Specifically, given an individual’s travel history x.; at
time t, it estimates the probability of visiting location I, ie.
7(lt|x<t), and generates a spatiotemporal trajectory by sequentially
sampling l; ~ (- [X<) to obtain a sequence of individual move-
ments. Then, for the entire urban population, their movements
are learned by following a joint policy, i.e. II(l;|x<:), and aggregate
into region-wide flows that reflect daily rhythms of urban activities.
To capture human mobility patterns at both individual and popula-
tion levels, we formulate the learning process of DeepMobility as the
following multiobjective optimization problem with respect to z:

min (Ldist (Paata (li1x<t), #(le|X<1)), Lerror (Ft,datay P(H(1t|x<t)))). (1)

The first objective aims to minimize the distance between the stat-
istical distribution of generated movements, i.e. z(l;|X<), and that of
observed data, 1.e. Pgata (It|X<t), In terms of spatiotemporal regularity.

The second objective aims to minimize the reconstruction error of
generated flows, i.e. F(II(l;|x<)), that are aggregated from popula-
tion’s movements. The complexity of this problem mainly lies in
the bidirectional influence across individual and population levels
of human mobility. First, the bottom-up aggregation of mobility
flows, indicated by II(l;|x«), essentially incorporates the influence
of social interactions from the population, which means II(l;|x<) #

1L, #(ln 1% <) and prohibits the traditional independent modeling.
Second, the individual mobility model z is simultaneously con-
strained by population-level mobility information, requiring a top-
down learning process.

The modeling framework of DeepMobility is presented in Fig. 2.
It consists of three components, i.e. a generator, a discriminator,
and a critic. The generator aims to generate individual trajectories
with the resulting flows that are indistinguishable from empirical
data by the discriminator. Figure 2a illustrates the generation pro-
cess at the generator, with a GRU-based state encoder that trans-
forms location visit history into a fixed-length hidden vector and a
hierarchical decoder that simulates the mobility decision process
to first decide the next visit region and then choose a specific loca-
tion in this region. To achieve collaborative learning from individ-
ual mobility to collective mobility and model the multiscale
patterns and complexity, we design a bottom-up social inter-
action modeling mechanism at the trajectory decoder.
Specifically, we use two modules to generate the next visit region
based on individual preference and social interaction, respective-
ly, and the final decision is made between these two according to a
learnable probability score that measures an individual’s uncer-
tainty about following his/her preference. The preference-based

Fig. 1. Illustration of complex urban mobility from both the individual and population perspectives. The bottom layer represents individual movement
trajectories between urban locations, and the top layer denotes population flows between urban regions, where more (fewer) arrow lines indicate larger
(smaller) flows. Among trajectories, several samples belonging to each flow are highlighted with the same color. Regions are shown as geographical

polygons.
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Fig. 2. Overview of the proposed deep generative collaboration network DeepMobility. It consists of three components to learn the complexity of urban
mobility. The first component is a mobility generator, as shown in the left panel. This generator is implemented using a GRU-based state encoder and a
trajectory decoder that produces the next visited location by employing a bottom-up social interaction modeling technique. Then a multilevel
discriminator evaluates the utility of the generated movements from both individual and population perspectives. This feedback is used to train a
multilevel critic (detailed in the right panel) that decomposes the overall guidance from population-level mobility and directly guides the optimization of

the generator at the individual level (Top-down feedback refinement).

module uses an multilayer perceptron (MLP) (45) that takes state
embedding as input and outputs a vector indicating the visitation
probability of each region, while the interaction-based module
also adopts an MLP-based structure (42) that takes regional attrib-
utes as input and predicts the visitation probability in terms of
population movements. Figure 2c illustrates the multilevel struc-
ture of the discriminator that evaluates the realism of generated
trajectories and the aggregated flows. The individual-level dis-
criminator also uses a gated recurrent unit (GRU)-based module
(46) as it needs to process a trajectory sequence and output the
score indicating whether it is similar to actual data, while the
population-level discriminator directly computes the relative er-
ror between the generated flow value and the ground truth.
These feedbacks are sent back to improve the generator through
another critic network using a well-established proximal policy
optimization algorithm (PPO) (47), as illustrated in Fig. 2d-f. To
achieve collaborative learning from collective to individual mobil-
ity data, we design a top-down feedback refinement mechanism
at the critic. Specifically, the critic adopts a multilevel structure
to approximate value functions for the generator output.
Besides the individual-level critic, another population-level critic
leverages a value decomposition technique (48) that transforms
the overall assessment of population movements into individual-
level feedback, which directly refines mobility behavior in a top-
down manner (Materials and methods and Section S1).

DeepMobility generates human mobility
trajectories and the resulting flows at the urban
scale

To assess the capability of the proposed DeepMobility modeling
framework, we perform an experiment that utilizes it to generate

synthetic data and evaluate whether they represent intricate mo-
bility patterns at both individual and population levels.
(Experiment details are provided in Section S2.) First, for individ-
ual mobility patterns, we verify if the generated trajectories are
statistically similar to the real data by quantify the distribution
differences using the Jensen-Shannon divergence (JSD) and the
Kolmogorov-Smirnov (KS) test (38, 49), which are bound by
[0, 1], with Oindicating a perfect match between two distributions.
In particular, we focus on the following five fundamental metrics
(1,35, 50): jump length Ar (distance of each travel), weekly trip dis-
tance ry, radius of gyration ry, waiting time At (time spent at the
same location), and daily visited locations S; of an individual.
These metrics comprehensively cover empirically observed mo-
bility patterns including spatial and temporal regularity (Ar, At)
(21), population heterogeneity (ry) (21) and ultraslow growth of
travel distance and visited location number (ry, S;) (24). Then,
for population mobility patterns, we use the CPC (32, 42) and the
mean absolute error (MAE) (35, 51) to calculate the distance be-
tween the real and the generated flows. The mobility flows are cal-
culated as how many people move from one region to another
within a period, and CPC is bounded by [0, 1] with 1 indicating
the two are identical and 0 suggesting no overlap. For perform-
ance comparison, we choose the four most widely used mechan-
istic approaches and deep-learning approaches, including the
CTRW model (21), the EPR model (24), the TimeGeo model (49),
and the GAN model (38, 52).

To verify the modeling capability of DeepMobility at the indi-
vidual mobility level, in Fig. 3a-d, we calculate the JS divergence
of five metrics (Ar, 1y, 14, At, and S;) for generated trajectories of
each model, finding that our model generates individual trajector-
ies with the highest statistical similarity. (See complete numerical
results in Table S3.) Further results of the KS test (Table S4) also
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Fig. 3. Comparison of generation realism, in terms of individual and population scales. For the four empirical datasets, comparison of the performance in
terms of JSD-based metrics (a-d), including Jump length, DailyLoc, Radius, Duration, and Trip distance, of the continuous time random walk (CTRW),
exploration and preferential return model (EPR), TimeGeo, GAN, and DeepMobility (Ours), for Beijing (a), Shangahi (b), Shenzhen (c), and Senegal (d).
Lower value of JSD-based metrics denotes a closer distribution with real data and thus represents better performance, and our framework clearly
achieves the best performance. e-h) Comparison of the performance in terms of common part of commuters (CPC) of the CTRW, EPR, TimeGeo, GAN, and
Ours. i-1) Statistical illustration of the model-predicted and real values of population flows for the four datasets. Symbols denote the average number of
generated flows for each bin and lines represent the 10-90% percentiles. The dashed line is a perfect agreement between the observed flows and the
generations. The points below symbols are scatter plot for each flow between a region pair. Our framework systematically outperforms other models.

verify such generation realism with 15 (out of 20) KS statistics of
distributions no larger than 0.2. Unlike mechanistic models,
DeepMobility leverages the power of deep learning to learn indi-
vidual features from the mobility data. Thus, it can capture di-
verse travel behaviors observed in the population, especially the
P(ry) corresponding to the individuals’ characteristic distance
that has been empirically observed to have a high population het-
erogeneity. Unlike the one-shot generation of a complete trajec-
tory as in the GAN model, DeepMobility simulates the mobility
decision process of an individual and generates the next visit

location in a sequential way, achieving significant realism
improvement.

To test the capability of DeepMobility in generating complex
mobility flows at the population level, in Fig. 3e-h, we measure
the CPC between the generated flows and the real flows for each
model, observing a remarkable performance improvement up to
120% (Beijing, 0.787 vs. 0.357), 112% (Shanghai, 0.686 vs. 0.324),
136% (Shenzhen, 0.560 vs. 0.216), and 81% (Senegal, 0.650 vs.
0.359). Our DeepMobility also achieves much less absolute error
(MAE), equivalent to 17-30% of the best-performing baseline
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Table 1. Ablation study on the two collaborative learning mechanisms.

Individual-level metrics

Population-level metrics

Model Dailyloc Jump length Trip distance Duration Radius MAE CPC
Beijing
w/o M1 and M2 0.011 0.066 0.023 0.013 0.044 62.54 0.490
w/o M1 0.008 0.067 0.021 0.018 0.058 44.34 0.587
w/o M2 0.010 0.063 0.019 0.015 0.046 61.09 0.507
DeepMobility 0.021 0.058 0.023 0.026 0.044 22.68 0.787
Shanghai
w/o M1 and M2 0.004 0.033 0.041 0.004 0.070 100.7 0.531
w/o M1 0.002 0.028 0.011 0.003 0.025 78.84 0.635
w/o M2 0.003 0.042 0.030 0.003 0.043 100.0 0.545
DeepMobility 0.003 0.029 0.008 0.005 0.025 63.12 0.686
Shenzhen
w/o M1 and M2 0.100 0.141 0.042 0.013 0.148 346.5 0.464
w/o M1 0.077 0.150 0.063 0.022 0.170 266.4 0.548
w/o M2 0.073 0.158 0.053 0.011 0.156 287.4 0.490
DeepMobility 0.070 0.046 0.019 0.015 0.073 253.0 0.560
Senegal
w/o M1 and M2 0.028 0.095 0.035 0.006 0.056 324.6 0.599
w/o M1 0.053 0.035 0.004 0.006 0.032 255.1 0.620
w/o M2 0.009 0.044 0.035 0.007 0.036 277.9 0.610
DeepMobility 0.010 0.037 0.019 0.006 0.034 223.0 0.650

M1 stands for the bottom-up interaction modeling at the generator. M2 stands for the top-down feedback refinement at the critic. The results show that the two
designs have major contributions to the population-level performance, and at the same time, capture the mobility patterns at the individual level. Bold values

indicate the best result and italic values indicate the second-best result.

model in four different cities (online supplementary material,
Table 3). To compare further the generated flows with the empir-
ical data, we measure the number of travels between each pair of
locations (Fig. 3i-1). Unlike our DeepMobility, both the mechanistic
model TimeGeo and the deep-learning model GAN generate un-
realistic flows that deviate from the empirical data. In particular,
the GAN model tends to generate overestimated flows for those
less-traveled pairs (number of travels <1, 000), and the TimeGeo
model performs the opposite in the cases of Shanghai and
Shenzhen. Correspondingly, in Figs. S5 and S6, we plot the mobil-
ity networks describing the observed flows and the flows gener-
ated by three models (DeepMobility, GAN, and TimeGeo), finding
that DeepMobility captures the overall structure of the flow net-
work while GAN and TimeGeo generate much denser connections
and sparser connections, respectively.

To understand the origin of the aforementioned exceptional
ability to capture intricate complexity within empirical urban mo-
bility data, we remove two collaborative learning mechanisms in
DeepMobility and retrain three model variants to evaluate their
generation realism (Table 1). We find that, compared to a vanilla
version without the designed collaborative learning mechanisms,
DeepMobility achieves a significant improvement of the CPC up to
60.6% (Beijing), 29.2% (Shanghai), 20.7% (Shenzhen), and 8.5%
(Senegal). It confirms the necessity of designing such a deep gen-
erative collaboration network to resolve the current discrepancy
between individual mobility modeling and population mobility
modeling. Furthermore, bottom-up interaction modeling and top-
down feedback refinement are incorporated in different modules,
allowing us to remove either of them to compare performance,
finding that incorporating population influences into the decision
process of individual-level movements contributes more than re-
fining the learning of individual mobility behavior. Note that nei-
ther of the two designed mechanisms hurts generation realism at
the individual mobility level, showing their strong compatibility.

By generating realistic individual trajectories and the resulting
population flows at the urban scale, DeepMobility successfully
preserves the organic nature of the urban population, as

individuals’ daily life activities are closely related to their mobil-
ity. To demonstrate its capability of reconstructing individuals’
activities at various urban locations, we apply a location type in-
ference method (49) to identify a collection of home locations
from the generated trajectories, finding that their spatial distribu-
tion is in good agreement with the empirical data (Fig. S7 and
Section S3.2). Another important empirical observation of urban
daily life through a mobility lens is the distribution of the most fre-
quent daily mobility networks, i.e. daily motifs (53). As we show in
Fig. S8, the distribution of the identified nine distinct motifs is
again consistent with the empirical data, with JS divergence sta-
tistics <0.084 in four cities (Section S3.2).

Reproduction of scaling laws governing human
mobility
Researchers have devoted considerable effort to understanding
human mobility, leading to the derivation of numerous mobility
laws documentedin theliterature. To validate DeepMobility’s abil-
ity to replicate empirically observed scaling laws, we analyze the
generated trajectories and flows. Jump length Ar, which quantifies
the spatial displacement between consecutive stops, follows a
truncated power-law distribution, p(Ar) ~ (Ar+Ar) ™ exp (- Ar/x1),
asshowninFig. 4a-d. The scalingexponentg; (~1.2--1.3)1is consist-
ent across cities and aligns well with empirical values (~1.2--1.3).
However, B, is smaller than earlier reports (~1.75), indicating po-
tential differences in the underlying mechanisms. This discrep-
ancy can be attributed to variations in spatial regularity, as
evidenced by the radius of gyration ry4 g, ~ (1.10, 1.17), as shown
in Fig. 4e-h (vs. 1.65 (21)). These findings highlight the increased
heterogeneity of travel patterns in the generated data, which chal-
lenges mechanistic models and simpler deep-learning ap-
proaches. Notably, the GAN model fails to reproduce these
patterns, confirming the importance of learning to simulate indi-
vidual travel decisions as in DeepMobility.

Another critical scaling property is Zipf's law (21), which gov-
erns the frequency f, of the kth most visited location, f, ~ k™
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Fig. 4. Generated mobility data vs. empirical data regarding different mobility laws at both individual and population levels. a—d) Our generated mobility
data reproduces the truncated power law of jump length (Ar), with the distribution approximated by p(x) ~ (x + xo) ™ exp (- x/x). The solid black line
represents the fitting result of Ar, with g = {1.28, 1.25, 1.34, 1.28} and R? = {0.976, 0.942, 0.971, 0.914] for the four datasets, respectively. e-h) Similar results
of the reproduced truncated power law of radius of gyration (ry), with #={1.20, 1.28, 1.22, 1.32} and R? = {0.991, 0.981, 0.976, 0.954}. i)-1) The generated
mobility data reproduces Zipf’s law of visitation frequency, where the visitation frequency f; to the ky, most visited location is well approximated by a
power law P(k) ~ k=¢, with ¢ = {1.15, 1.05, 1.01, 1.10} and R? = {0.973, 0.981, 0.966, 0.963}. m-p) The aggregated location visitation at the population level
also reproduces the distance-frequency scaling law of mobility flow, where the number of visitors to a location with a specific frequency p(r, f) is
well-described by a power law fitting p(r, f) = u/(rf)", with 5 = {2.01, 2.04, 2.09, 2.08} and R? = {0.926, 0.927, 0.940, 0.964}.

(C ~ 1.2), arising from the memory effect that individuals tend to captures other memory-related behaviors, such as the sublinear
return to previously visited locations preferentially. By encoding growth in the number of distinct locations visited (24)
visitation history, DeepMobility captures the preferential return (Fig. S10a-d and Section S3.3) and ultraslow long-term spatial
mechanism, resulting in f, exponents (¢ ~ 1.0 — 1.1) that are close movements (21) (<logarithmic growth, Fig. S10) with time evolution
to empirical values (Fig. 4i-1). When the memory effectis removed, (Fig. S10e-h and Section S3.3). These patterns collectively contrib-
the distribution of f, becomes more uniform, similar to scale-free ute to the high predictability of the generated trajectories (Fig. S11

random walk models (21) (Fig. S9). Additionally, DeepMobility and Section S3.3), which is consistent with earlier findings (23).
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At the population level, DeepMobility reproduces the “spectral”
flow p;(r, f), where p;(r, f)—the number of visitors with visitation
frequency f to a location i from distance r—follows a universal
power law, scaling inversely with r-f (32) (Fig. 4m-p). This is
achieved through collaborative learning mechanisms, as
GAN-based models or simplified versions of DeepMobility fail to
replicate such patterns (Fig. S12). Furthermore, DeepMobility re-
produces other empirical patterns, including power-law distribu-
tions of origin-destination trips (30) and statistical properties of
demand networks (31) (Figs. S13 and S14). The remarkable con-
sistency between mobility patterns reproduced by DeepMobility
and fundamental laws established by physicists (21, 23, 24, 30,
32) suggests that DeepMobility successfully captures the intricate
interplay between individual heterogeneous movements and col-
lective behaviors in a manner unmatched by previous models.

DeepMobility captures the inherent mechanism of
complex urban mobility that is geographically
transferable

For generative models of urban mobility, the capability for geo-
graphic transferability reflects their ability to generalize in captur-
ing consistent mobility patterns across different cities. This is also
essential for DeepMobility, as it means the model captures the in-
herent mechanisms of complex urban mobility, rather than mere
data memorization. Moreover, due to the increasing cost of data
acquisition, high-quality human mobility data is often scarce or
even absent in some underdeveloped urban regions. In real-world
applications of urban mobility generation, practitioners may have
to develop generative models using available mobility data col-
lected from some cities and then use these models to generate ur-
ban trajectories in other targeted cities without any mobility data.

To accommodate transferable mobility generation between
different cities, we improve the model design of DeepMobility
(Materials and methods, Section S1.5), train this improved model
on mobility data of one city and test its generation realism in other
cities, including both transfers across Chinese datasets and trans-
fers to international datasets. To verify the geographic transfer-
ability of DeepMobility, in Fig. 5a-d, we calculate evaluation
metrics of generation realism at both individual and population
levels and compare with three mechanistic models (Complete re-
sults are shown in Table S5.) Note that, unlike deep-learning mod-
els such as GANs, mechanistic models are intrinsically
transferable. We find that DeepMobility-generated trajectories
have the highest statistical similarity to real data in terms of five
individual-mobility metrics, i.e. (A1, ry, 1q, At, Sg), and the result-
ing flows reconstruct realistic population-level mobility with the
highest accuracy (CPC and MAE). In particular, DeepMobility
trained in one city reproduces the spatio-temporal mobility pat-
terns (P(Ar), P(At)) in another city, with JS divergence <0.1, and fi-
nally captures the population heterogeneity (P(ry)). The
improvement in flow generation is significant, over 60% (CPC) in
3 x 2 source-target pairs. In Fig. Se-g, we show complete results
of transferability evaluation for P(Ar), P(At) and flow similarity,
finding that the transferred DeepMobility is on par with its coun-
terpart trained on the target city. Individual-level trajectories are
equally realistic (JS divergence < 0.1) and population-level flows
yield CPCs that are remarkably close to nontransferred ones (56—
95%). Notably, even when tested on international datasets—
such as Beijing to Senegal, Shanghai to Senegal, and Shenzhen
to Senegal—where urban infrastructure, data availability, and
mobility dynamics differ significantly, the model exhibits robust
transferability (JS divergence < 0.1, CPC > 0.4). It effectively adapts

from data-rich environments to data-scarce regions while main-
taining high accuracy. These results indicate the potential cap-
ability of extending DeepMobility to generate realistic mobility
data with high utility for any given cities around the world.

Discussion

Recent advancements in generative Al technologies have marked-
ly enhanced content generation capabilities, spanning text, im-
ages, and videos. However, generating human behavior, in
contrast to these forms of content, presents a more formidable
challenge due to the complexity of intricate linkages between in-
dividual actions and collective population dynamics. Our re-
search, focusing on human mobility behavior as an initial
endeavor, demonstrates that a novel generative deep-learning ap-
proach, enriched with effective collaborative learning mecha-
nisms, can successfully bridge this gap and enable the
generation of complex urban mobility data across various cities.
This development further implies, with minimal urban contextin-
formation on demographics and geography, how generative Al
helps generate a vibrant, “organic” urban population with intri-
cate dynamics by modeling the way individuals interact, engage,
and utilize services in the course of their daily movements.

This new deep learning approach is designed to generate both
individual movements and the resulting population flows in a
city, making it possible to answer a long-standing question of
whether deep-learning models can capture underlying mecha-
nisms driving complex urban mobility across both individual
and population levels. Our results of reproducing mobility scaling
laws give a “yes” answer to this question (Fig. 4), confirming the
importance of achieving collaborative learning between individ-
ual and population mobility. In this regard, machine intelligence
can further augment understanding and learning of complex
mechanisms behind individuals’ mobility decisions (19, 54). Our
model design has made this possible by supporting an in-depth
analysis of the behavioral patterns learned by the policy network,
where we have uncovered interpretable mechanisms regarding
human mobility decisions (Section S3.5).

An interesting question here is how trustworthy the designed
deep model is in generating realistic synthetic data without com-
promising privacy since empirical studies have found that individ-
uals can be identified from mobility data due to the uniqueness of
their trajectories (55, 56). To that end, we examine the overlap ra-
tio between real and generated trajectories, and also the identifi-
ability of a real individual from generated trajectories (Section S3.
6). We find that, for mostindividuals in real data, their trajectories
share only a small portion with the most similar generated trajec-
tories, and itis mathematically infeasible to identify a real individ-
ual when mixed with generated ones (Fig. S17). Therefore, the
proposed deep generative model does not simply “memorize”
the real mobility trajectories, but instead learns the underlying
mechanisms driving human mobility patterns.

Although our results demonstrate the model’s ability to capture
complex urban mobility dynamics, we acknowledge the potential
biases inherent in the mobility data used for training. These biases
arise from the data collection process, which primarily relies on
mobile phone usage. While mobile phone penetration rates are
high in modern society, they can still vary across demographics
and regions.To minimize these biases as much as possible, we em-
ployed random sampling techniques to obtain individual trajector-
ies, reducing the risk of introducing additional biases. We also
validated the model’s generalizability across diverse cities.
Nonetheless, these biases highlight the importance of further
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investigation into how variations in data sources and collection
methods impact the reliability and accuracy of generated mobility
patterns. Future efforts could integrate additional data sources,
such as census information or transport infrastructure data, to en-
hance the robustness and representativeness of the generated data.

From a practical standpoint, our developed DeepMobility frame-
work has demonstrated the potential to generate realistic and com-
plex urban mobility data. This is particularly significant in cities
lacking available mobility data, providing immediate and valuable
applications in the fields of epidemic disease containment, traffic
engineering, and urban planning (14, 15). Looking ahead, the
framework can be enhanced by integrating the impact of urban
road networks on human mobility, thus offering a more compre-
hensive modeling approach (57). In terms of future applications,
DeepMobility has the potential to evolve into a transparent tool
for constructing open urban mobility data that could offer detailed
insights into population movements within cities globally. This ad-
vancement would serve as a valuable complement to the current
static and coarse-grained mapping of world populations (58, 59).
By providing a more nuanced understanding of urban mobility pat-
terns, DeepMobility will be instrumental in supporting the develop-
ment of sustainable and livable cities worldwide (60, 61).

While this study establishes a strong foundation for generating
urban mobility data, several opportunities remain for further ex-
ploration. First, integrating additional contextual data, such as
land use, transportation networks, and socioeconomic indicators,
could enhance the model’s ability to capture regional variations
and provide more context-aware mobility simulations. Second,
uncovering interpretable mechanisms and patterns from deep
learning-based neural networks is critical for advancing the use
of artificial intelligence in mobility science, enabling deeper in-
sights into human mobility behaviors. Lastly, extending the
framework to other domains, such as evacuation planning or dis-
aster response, could unlock new possibilities for addressing
pressing urban challenges. These directions will not only enhance
the capabilities of DeepMobility but also expand its potential im-
pact across a wide range of applications.

Materials and methods
M1. Datasets

We use four datasets to demonstrate the DeepMobility generation
framework. The first two datasets (DS1, DS2) use the anonymized
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location record of about 1.8 million users in Beijing, China and 0.32
million users in Shenzhen, China, respectively. These users have
signed up for a location-based service and their locations are re-
corded every hour for a 1-month period. The third dataset (DS3)
covering Shanghai (China) consists of around 1.9 million anony-
mized users of China’s major telecom company. The data are col-
lected during a 1-week period for billing purposes, recording the
location at the beginning and the end of each service (a call, an
SMS, or an Internet connection). The fourth dataset (DS4) of
Senegal is based on anonymized call detail records (CDRs) from
about 0.3 million users during a 2-week period with a temporal
resolution of 10 min. These datasets capture daily human move-
ments at both individual and population levels, i.e. trajectories
and the resulting flows. The details of data processing and feature
extraction are provided in online supplementary material, Section
S1.1.

M2. DeepMobility
GAIL-based framework

To solve the generative learning problem of urban mobility in Eq.
(1), we resort to generative adversarial imitation learning (GAIL)
(62) due to the analogy between mobility modeling and decision
policy learning. Specifically, we define the set of locations L as
the action space A, and the set of visitation history X.; as the state
space S. Then learning =(l:[x<t) equals to finding optimal z(s, a) in
GAIL. Moreover, to describe the complex decision process of a
group of individuals, we further extend MDP into decentralized
partially observable MDP (Dec-POMDP) (63) that can be repre-
sented by a 7-tuple <S, {A,}, P, R, {Qu}, O, y>:

1. Sisasetofstates and each state s consists of all agents. In the
partially observable setting, agents have no access to the
overall state.

2. Ayisasetofactions foragentn, and A = x,A, is the set of joint
actions. Specifically, an action a,: indicates the next place to
visit for individual n at time t.

3. P is a set of conditional transition probabilities between
states, with P(s'|s, a) denoting transition probability from s
to s’ given a joint action a. The transition is deterministic in
this problem.

4. R:Sx A~ R denotes the reward function r(s, a).

5. Q, is a set of observations for agent n, and Q = x,Q, is the set
of joint observations.

6. O is a set of conditional observation probabilities, i.e.
{O(o, s, a)}. The observation is also deterministic in this prob-
lem. Specifically, for anindividual n at time t and location I;_1,
his/her observation o,; combines both historical movements
X =[X1, %, ..., X-1] and the distribution of population
movements from l;_; to other locations, denoted as f—‘lH. The
latter represents a limited ability of individuals to observe
other people’s travel decisions.

7. y €0, 1] is the discount factor.

Based on the above formulation, we propose a GAIL-based ap-
proach for learning =(l:|x<;) that aims to capture human mobility
patterns at both individual and population levels. The preliminary
on GAIL is detailed in Section S1.2.

Collaborative learning mechanisms

In order to establish a bidirectional link between individual and
population levels of mobility modeling in DeepMobility, we design

the bottom-up and top-down collaborative learning processes,
respectively.

(1) Bottom-up interaction modeling. We begin by developing a
generator module capable of creating interconnected movements
from a big urban population. Aside from personal taste, an indi-
vidual’s travel decisions are heavily influenced by social interac-
tions (17, 64). For example, trajectories traveled by a person
show his/her daily pattern, implying a memory effect in which
historical movements influence future mobility behavior.
Meanwhile, an individual may visit some unexpected areas ad-
vised by his or her friends on occasion, suggesting social interac-
tions among a population of individuals. To directly characterize
these interactions for N individuals, substantial pairwise linkages
(~N?) would have to be computed, which is not feasible. To ad-
dress this issue, we propose the formulation of the mobility model
mo(atlor) as a composite of two parameterized decision processes:

a(atlor) = Collab(my, (a:| X<t), 7o, (a:Fy,_,)), )]

where m (a;]X<) and my, (a;|F, ) represent two distinct decision
policies considering individual preference and population influ-
ence, respectively. The first part =y (a:|X<:) captures individual
preference by learning movement regularities from the historical
trajectory X, while the second part m, (a:|F;_,) characterizes the

social interaction influence from population movements F_
that are shaped by the urban environment. The collaboration be-
tween these two parts is designed as making a discrete choice be-
tween them according to a parameterized Bernoulli distribution
Bernoulli(u;), where u; = Uy, (X«) € [0, 1] characterizes a learned
probability that measures individual’s uncertainty on following
his/her preference. Formally,

Prob=1 - u;
Prob = u; ’

m(atlor) = { o (at|>~(<t), .

g, (aclFy_,),
If the individual uncertainty on historical visitation is high, this in-
dividualis more likely to follow a population-level decision (wy, ) in-
stead of his/her preference (rp). The designed collaboration
between two decision processes successfully incorporates popu-
lation influences at the individual level, achieving bottom-up so-
cial interaction modeling of complex urban mobility.

(2) Top-down feedback refinement. Next, we design a critic
module thatimproves the generator in terms of capturing bidirec-
tional influence between individual level and population level of
urban mobility. The critic V, approximates the value function of
mobility decisions at the generator zy and guides the optimization
direction of zy accordingly using policy learning algorithms like
PPO (47). (Detailed in Section S1.2.) As =y generates individual
movements that are then aggregated into population flows, V,
should evaluate the value of each movement based on not only
its fitness to individual-level patterns but also its contribution to
aggregated flows. The former is completed by an individual critic
Vy,(0r) that learns to predict the correct value function of individ-
ual movements based on whether =y(a:Jo;) matches patterns in
empirical data. However, the latter is far more challenging due
to the high-dimensional space of joint actions a: € x,A, and ob-
servations o € x,Q,, arising from the entire population.
Therefore, to solve this issue, we propose to decouple the joint
space optimization by decomposing the population critic
Qg (01, a;) from the entire population (~N) into a sum of
Qg (0nt, any) from each individual. Formally,

Q,;)p (Ot, at) = Z Q¢p (on,t, an,t)- (4)
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Then, we optimize Qg, using Monte-Carlo policy evaluation as fol-
lows:

n;jn En [(Qn(o, a)-Qy, (o, a))z],

T—t
where Qp(o, a) = [E,[Z ¥ ryp lor=0,a; = a},
k=1 (5)

Ft+k,data B Ft+k,mode1

Ft+k,data

Tk =IOk, Bik) =

and agy ~ Io( - [0p4)-

The global reward r; measures the relative error between the real

flow matrix F, 3,5 and F, ) 40 generated by following joint pol-

0Qy, (0, ar) . . .
m >0, Vi, thus the optimization of

Qg, yields the same optimization direction on each Qg ». In this

icy I(a¢lo;). Note that

way, we manage to make the optimization of the population-level
critic Qg (o¢, a;) feasible by turning global optimization into a ser-
ies of coordinated optimization processes at the individual level,
ie. with respect to Qg (Ont, dny). Finally, we combine value estima-
tions of zy(at|or) from two critics, i.e. V4 (0;) and Qy, (o1, at), and up-
date the generator parameters using PPO. (Detailed in Section S1.
3.) The above design of value decomposition from population level
to individual level achieves the top-down refinement of zy(at|or)
based on feedback from the quality of generated flows.

Generator architecture

Figure S1 shows the network architecture of the mobility
generator.

(1) State encoder. We first utilize a GRU to learn the state re-
presentation of the historical trajectory. Specifically, we trans-
form previously visited locations represented by one-hot
encoding, along with temporal information, into vectors e; by an
embedding layer; then we learn a representation of the individu-
al’s historical trajectory h; using a GRU network, which captures
non-Markov, memory effects of individual mobility.

(2) Hierarchical decoder. Next, we adopt a hierarchical struc-
ture at the trajectory decoder that first outputs the next region 1;
to visit and then selects a specific location ; that belongs to ;.

In the first stage, we design an interaction-fused region selec-
tion process that characterizes the influences from both individ-
ual preference and social interaction. As in Eq. (2), we select r;
according to an uncertainty-based probability score u;, which is
obtained based on the following multihead uncertainty estima-
tion module:

u: = Sigmoid(var(vy)),
U1

v
where v,, = MLP(h;) = .2 (©)
Ui

is a H-dimensional vector whose variance across different heads
{1,2, ..., H} is used to estimate the state uncertainty. Note that
we use the Sigmoid function to transform it into a probability
score between 0 and 1. If the estimated uncertainty u; is high,
the individual will be more likely to consider following collective
behaviors. Otherwise, the individual prefers to follow her own
preference based on historical memory.

As for the specific network architecture that simulates the re-
gion selection process based on individual preference, we utilize
an MLP to transform h; into an n-dimensional vector and normal-
ize it by a softmax function as follows:

exp (MLP(hy));
= Y exp (ML)

where N is the number of regions, and z, (1;|X<:) denotes the prob-

o, (151X <t) €2 ... N} ¢

ability of visiting region r;.
As for simulating the region selection process based on collect-
ive behaviors, we consider the spatial movement distribution of
populations originating from the current region to other regions.
We utilize the follow network architecture to learn a
N,-dimensional probability nop(rj|f’ltfl),j €{1,2,...,N;} as in Eq.
(2). The vectoris calculated in the following steps. First, an embed-
ding layer transforms region attributes, including the population
Xrpop @nd POI distribution x, ., into region representation e,
then the input vector e; is obtained by concatenating the re-
presentation of the origin region e, the representation of the des-
tination region ey, the distance representation e(d;) between two
regions, and the time representation e(t). Second, the input vectors
ej are all fed into the same network, which is an MLP with 10 64D
hidden layers and has the LeakyReLu as the activation function.
The last layer outputs the probability to observe a trip from the
origin region r; to destination regions 1;,j€{1,2, ..., N;}. The
above process is formulated as follows:
ey = Concat(Wpopone-hot(xy pop) + Wpeione-hot(x; 1)),
ej = Concatl(ey,, ey, e(dy), e(t)),
an () =D MR o,
> exp (MLP(ey))
In the second stage, based on selected region r;, we design another
location-selection process that chooses the next location belong-
ingtor;. To cope with a varied number of locations across different
regions, we utilize an attention-based network to calculate the
probability of visiting a specific location [; within r; as follows:
exp (U] Uw)
w(l;) = T )
D exp (ufuw)
k

where u; = tanh(MLP(e;))
and e; = Concat(hy, e}, e(dy), e(t)).

e{L2 ..., Ny,

Ny, is the number of locations in region rj, h; is the history re-
presentation obtained from the state encoder, e; = one-hot(l) is
the embedding of the location, e(dy) is the representations of dis-
tance between current location [; and target location Ij, and e(t)
is the representation of the current time. u,, queries the location
characteristics associated with the current state, which is a ran-
domly initialized vector and is updated in the training procedure.

Discriminator architecture

We define multilevel reward functions that give a comprehensive
evaluation of the generation outcome with respect to individual
and population levels, respectively. We characterize the two re-
ward functions separately, where the first individual-level reward
function is characterized by a neural network-based discrimin-
ator D, with parameters ¢, and the second population-level re-
ward function is directly available. Figure 2 illustrates the
discriminator architecture. Specifically, the multilevel rewards
are calculated as follows:

11,c = log(Dy(ox, ar)), (10)
F -F
Tor = t,dat; t,model ’ (11)
tdata
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where o, a; denotes the state and action at time t, F € RN>N*Nr ig
the flow matrix, N; is the number of time periods, r;+ denotes the
individual-level reward, and rp; denotes the population-level re-
ward. D, is trained by a binary classification task that distin-
guishes between real and generated state-action pairs. We
adopt a non-parametric method for rp, which calculates the rela-
tive distance between the generated flows and real-world cases.
As for the network architecture of D, shown in Fig. S2, we also
design a hierarchical structure that evaluates the decisions at two
stages, 1.e. region and location, respectively. At the region level,
the state o; is the historical sequence of visited regions, and the ac-
tion a; is the selected region based on the state. Correspondingly,
the state and action at the location level are the historical location
sequence and the selected locations, respectively. For both levels,
the network consists of two components: (i) an embeddinglayer to
transform the historical sequence into vector representations, (ii)
a GRU to obtain the sequence representation, and (iii) an output
layer with a Sigmoid activation function to produce the classifica-
tion result based on the sequence representation. The discrimina-
tor's output denotes the probability that the state-action pair
comes from the real data. The nonparametric discriminator cal-
culates the distance between real and generated population flows.

Critic architecture

Figure S3 shows the network architecture of the individual-level
critic and population-level critic. The individual-level critic shares
the same state encoder with the generator, including the
Embedding layer and GRU layer, to obtain state representations.
Then, we adopt an MLP to predict the individual state value
Vy,(0r). The population-level critic is modeled by another MLP net-
work, which takes in the concatenation of the state embedding
and action embedding. Specifically, the state embedding is ob-
tained by a similar network as the individual-level critic, and the
action embedding is obtained by an embedding layer. The joint
value function Qy (o, &) is obtained by aggregating the value
Q,,;p (ont, an;) from each individual n. Mathematically, the above
process is formulated as follows:

V4 (01) = MLP(GRU(Emb(0y))),
Qg,(0n,t, an) = MLP(Concat(GRU(Emb(0n,r)), Emb(an,))), 1)

N
Q, (0, ar) = Z Qg, On,t, ang),
n=1

where o, and ,a,; are the state and action of the ny, individual, ot
and a; are the joint state and action, and Emb denotes Embedding
layers.

Transferable mobility generation

To accommodate transferable mobility generation between dif-
ferent cities, we refine the design of DeepMobility as follows.
First, we enhance the transferability of the location representa-
tion used in the generator. The widely used embedding technique
(35, 38, 65) is no longer applicable due to a lack of transferability.
Instead, we encode all locations in different cities using two char-
acteristics, visitation popularity and POI number grouped by cat-
egory. These two features reflect important properties about
location attractiveness and land use profile, respectively, and
should have a general impact on individuals’ travel decisions, in-
dependent of the city in which they are located. Moreover, they
are both location-based aggregation metrics that can be readily
collected at a low cost from location data providers (such
as Safegraph) and crowd-sourcing platforms (such as

OpenStreetMap). The detailed design of transferable location re-
presentationis presentedin Fig. 4 and Section S1.5. Second, to fur-
ther guarantee the generalization capability of DeepMobility, we
remove the design of top-down feedback refinement, as it pro-
vides accurate but prone-to-overfitting supervision on the gener-
ated flows during training. Then, we train this improved
DeepMobility on mobility data of one Chinese city and testits gen-
eration realism in the other two Chinese cities. Note that we
choose a generator with good transferability rather than one
that produces statistically similar data.
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Supplementary material is available at PNAS Nexus online.
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